Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

A Bayesian Approach To Heavy-Tailed Finite Mixture Autoregressive Models

dc.contributor.author Maleki, Mohsen
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Vu-Thanh Nguyen
dc.contributor.author Pho, Kim-Hung
dc.contributor.author Mahmoudi, Mohammad Reza
dc.contributor.authorID 56389 tr_TR
dc.date.accessioned 2021-01-07T11:41:59Z
dc.date.accessioned 2025-09-18T12:49:13Z
dc.date.available 2021-01-07T11:41:59Z
dc.date.available 2025-09-18T12:49:13Z
dc.date.issued 2020
dc.description Maleki, Mohsen/0000-0002-2774-2464; Pho, Kim-Hung/0000-0003-0410-8839; Pho, Kim Hung/0000-0001-9743-1306 en_US
dc.description.abstract In this paper, a Bayesian analysis of finite mixture autoregressive (MAR) models based on the assumption of scale mixtures of skew-normal (SMSN) innovations (called SMSN-MAR) is considered. This model is not simultaneously sensitive to outliers, as the celebrated SMSN distributions, because the proposed MAR model covers the lightly/heavily-tailed symmetric and asymmetric innovations. This model allows us to have robust inferences on some non-linear time series with skewness and heavy tails. Classical inferences about the mixture models have some problematic issues that can be solved using Bayesian approaches. The stochastic representation of the SMSN family allows us to develop a Bayesian analysis considering the informative prior distributions in the proposed model. Some simulations and real data are also presented to illustrate the usefulness of the proposed models. en_US
dc.description.publishedMonth 6
dc.identifier.citation Mahmoudi, Mohammad Reza...et al. (2020)."A Bayesian Approach to Heavy-Tailed Finite Mixture Autoregressive Models", Symmetry-Basel, Vol. 12, No. 6. en_US
dc.identifier.doi 10.3390/sym12060929
dc.identifier.issn 2073-8994
dc.identifier.scopus 2-s2.0-85089195675
dc.identifier.uri https://doi.org/10.3390/sym12060929
dc.identifier.uri https://hdl.handle.net/123456789/12293
dc.language.iso en en_US
dc.publisher Mdpi en_US
dc.relation.ispartof Symmetry en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Gibbs Sampling en_US
dc.subject Mcmc Method en_US
dc.subject Non-Linear Time Series en_US
dc.subject Finite Mixture Autoregressive Models en_US
dc.subject Smsn Distributions en_US
dc.title A Bayesian Approach To Heavy-Tailed Finite Mixture Autoregressive Models en_US
dc.title A Bayesian Approach to Heavy-Tailed Finite Mixture Autoregressive Models tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Maleki, Mohsen/0000-0002-2774-2464
gdc.author.id Pho, Kim-Hung/0000-0003-0410-8839
gdc.author.id Pho, Kim Hung/0000-0001-9743-1306
gdc.author.institutional Baleanu, Dumitru
gdc.author.scopusid 56684432000
gdc.author.scopusid 57214767247
gdc.author.scopusid 7005872966
gdc.author.scopusid 57218439634
gdc.author.scopusid 57208444555
gdc.author.wosid Mahmoudi, Mohammad Reza/Aax-4890-2020
gdc.author.wosid Nguyen, Vu/Hgv-1806-2022
gdc.author.wosid Maleki, Mohsen/L-9476-2019
gdc.author.wosid Pho, Kim-Hung/Abi-4974-2020
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.author.wosid Pho, Kim-Hung/Aao-4536-2020
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Mahmoudi, Mohammad Reza] Duy Tan Univ, Inst Res & Dev, Da Nang 550000, Vietnam; [Mahmoudi, Mohammad Reza] Fasa Univ, Fac Sci, Dept Stat, Fasa 7461686131, Iran; [Maleki, Mohsen] Univ Isfahan, Dept Stat, Esfahan 8174673441, Iran; [Baleanu, Dumitru] Cankaya Univ, Fac Art & Sci, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele 077125, Romania; [Vu-Thanh Nguyen] Univ Econ & Law, Ho Chi Minh City 700000, Vietnam; [Pho, Kim-Hung] Ton Duc Thang Univ, Fac Math & Stat, Fract Calculus Optimizat & Algebra Res Grp, Ho Chi Minh City 758307, Vietnam en_US
gdc.description.issue 6 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.volume 12 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W3033842508
gdc.identifier.wos WOS:000550834100001
gdc.openalex.fwci 0.88115729
gdc.openalex.normalizedpercentile 0.79
gdc.opencitations.count 6
gdc.plumx.crossrefcites 8
gdc.plumx.scopuscites 9
gdc.scopus.citedcount 9
gdc.wos.citedcount 8
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files