A new causal discovery heuristic
dc.authorid | Tarim, S. Armagan/0000-0001-5601-3968 | |
dc.authorid | Ozkan, Ibrahim/0000-0002-1092-8123 | |
dc.authorscopusid | 7004234709 | |
dc.authorscopusid | 6506794189 | |
dc.authorscopusid | 23482661200 | |
dc.authorwosid | Tarim, S./B-4414-2010 | |
dc.authorwosid | Ozkan, Ibrahim/I-8714-2013 | |
dc.contributor.author | Prestwich, S. D. | |
dc.contributor.author | Özkan, İbrahim | |
dc.contributor.author | Tarim, S. A. | |
dc.contributor.author | Ozkan, I. | |
dc.contributor.authorID | 6641 | tr_TR |
dc.contributor.authorID | 169580 | tr_TR |
dc.contributor.other | Yönetim Bilişim Sistemleri | |
dc.date.accessioned | 2018-09-17T09:26:47Z | |
dc.date.available | 2018-09-17T09:26:47Z | |
dc.date.issued | 2018 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Prestwich, S. D.] Univ Coll Cork, Dept Comp Sci, Insight Ctr Data Analyt, Cork, Ireland; [Tarim, S. A.] Cankaya Univ, Dept Management, Ankara, Turkey; [Ozkan, I.] Hacettepe Univ, Dept Econ, Ankara, Turkey | en_US |
dc.description | Tarim, S. Armagan/0000-0001-5601-3968; Ozkan, Ibrahim/0000-0002-1092-8123 | en_US |
dc.description.abstract | Probabilistic methods for causal discovery are based on the detection of patterns of correlation between variables. They are based on statistical theory and have revolutionised the study of causality. However, when correlation itself is unreliable, so are probabilistic methods: unusual data can lead to spurious causal links, while nonmonotonic functional relationships between variables can prevent the detection of causal links. We describe a new heuristic method for inferring causality between two continuous variables, based on randomness and unimodality tests and making few assumptions about the data. We evaluate the method against probabilistic and additive noise algorithms on real and artificial datasets, and show that it performs competitively. | en_US |
dc.description.publishedMonth | 4 | |
dc.description.sponsorship | Science Foundation Ireland (SFI) [SFI/12/RC/2289] | en_US |
dc.description.sponsorship | Our research was aided by the availability of benchmarks in the UCI Machine Learning Repository [19] and the Cause Effect Pairs collection of [21]. This work was supported in part by Science Foundation Ireland (SFI) under Grant Number SFI/12/RC/2289. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded - Social Science Citation Index | |
dc.identifier.citation | Prestwich, S.D., Tarım, S.A., Özkan, I. (2018). A new causal discovery heuristic. Annals of Mathematics and Artificial Intelligence, 82(4), 245-259. http://dx.doi.org/10.1016/10.1007/s10472-018-9575-0 | en_US |
dc.identifier.doi | 10.1007/s10472-018-9575-0 | |
dc.identifier.endpage | 259 | en_US |
dc.identifier.issn | 1012-2443 | |
dc.identifier.issn | 1573-7470 | |
dc.identifier.issue | 4 | en_US |
dc.identifier.scopus | 2-s2.0-85043705539 | |
dc.identifier.scopusquality | Q3 | |
dc.identifier.startpage | 245 | en_US |
dc.identifier.uri | https://doi.org/10.1007/s10472-018-9575-0 | |
dc.identifier.volume | 82 | en_US |
dc.identifier.wos | WOS:000433548900004 | |
dc.identifier.wosquality | Q3 | |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.scopus.citedbyCount | 2 | |
dc.subject | Causality | en_US |
dc.subject | Randomness | en_US |
dc.subject | Unimodality | en_US |
dc.title | A new causal discovery heuristic | tr_TR |
dc.title | A New Causal Discovery Heuristic | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 1 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | a11c7bcf-014a-4055-a51f-7b1bfacff753 | |
relation.isAuthorOfPublication.latestForDiscovery | a11c7bcf-014a-4055-a51f-7b1bfacff753 | |
relation.isOrgUnitOfPublication | 907f32e8-a2ec-47a0-b274-af0eefc912b5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 907f32e8-a2ec-47a0-b274-af0eefc912b5 |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: