Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

A new causal discovery heuristic

dc.authorid Tarim, S. Armagan/0000-0001-5601-3968
dc.authorid Ozkan, Ibrahim/0000-0002-1092-8123
dc.authorscopusid 7004234709
dc.authorscopusid 6506794189
dc.authorscopusid 23482661200
dc.authorwosid Tarim, S./B-4414-2010
dc.authorwosid Ozkan, Ibrahim/I-8714-2013
dc.contributor.author Prestwich, S. D.
dc.contributor.author Özkan, İbrahim
dc.contributor.author Tarim, S. A.
dc.contributor.author Ozkan, I.
dc.contributor.authorID 6641 tr_TR
dc.contributor.authorID 169580 tr_TR
dc.contributor.other Yönetim Bilişim Sistemleri
dc.date.accessioned 2018-09-17T09:26:47Z
dc.date.available 2018-09-17T09:26:47Z
dc.date.issued 2018
dc.department Çankaya University en_US
dc.department-temp [Prestwich, S. D.] Univ Coll Cork, Dept Comp Sci, Insight Ctr Data Analyt, Cork, Ireland; [Tarim, S. A.] Cankaya Univ, Dept Management, Ankara, Turkey; [Ozkan, I.] Hacettepe Univ, Dept Econ, Ankara, Turkey en_US
dc.description Tarim, S. Armagan/0000-0001-5601-3968; Ozkan, Ibrahim/0000-0002-1092-8123 en_US
dc.description.abstract Probabilistic methods for causal discovery are based on the detection of patterns of correlation between variables. They are based on statistical theory and have revolutionised the study of causality. However, when correlation itself is unreliable, so are probabilistic methods: unusual data can lead to spurious causal links, while nonmonotonic functional relationships between variables can prevent the detection of causal links. We describe a new heuristic method for inferring causality between two continuous variables, based on randomness and unimodality tests and making few assumptions about the data. We evaluate the method against probabilistic and additive noise algorithms on real and artificial datasets, and show that it performs competitively. en_US
dc.description.publishedMonth 4
dc.description.sponsorship Science Foundation Ireland (SFI) [SFI/12/RC/2289] en_US
dc.description.sponsorship Our research was aided by the availability of benchmarks in the UCI Machine Learning Repository [19] and the Cause Effect Pairs collection of [21]. This work was supported in part by Science Foundation Ireland (SFI) under Grant Number SFI/12/RC/2289. en_US
dc.description.woscitationindex Science Citation Index Expanded - Social Science Citation Index
dc.identifier.citation Prestwich, S.D., Tarım, S.A., Özkan, I. (2018). A new causal discovery heuristic. Annals of Mathematics and Artificial Intelligence, 82(4), 245-259. http://dx.doi.org/10.1016/10.1007/s10472-018-9575-0 en_US
dc.identifier.doi 10.1007/s10472-018-9575-0
dc.identifier.endpage 259 en_US
dc.identifier.issn 1012-2443
dc.identifier.issn 1573-7470
dc.identifier.issue 4 en_US
dc.identifier.scopus 2-s2.0-85043705539
dc.identifier.scopusquality Q3
dc.identifier.startpage 245 en_US
dc.identifier.uri https://doi.org/10.1007/s10472-018-9575-0
dc.identifier.volume 82 en_US
dc.identifier.wos WOS:000433548900004
dc.identifier.wosquality Q3
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 2
dc.subject Causality en_US
dc.subject Randomness en_US
dc.subject Unimodality en_US
dc.title A new causal discovery heuristic tr_TR
dc.title A New Causal Discovery Heuristic en_US
dc.type Article en_US
dc.wos.citedbyCount 1
dspace.entity.type Publication
relation.isAuthorOfPublication a11c7bcf-014a-4055-a51f-7b1bfacff753
relation.isAuthorOfPublication.latestForDiscovery a11c7bcf-014a-4055-a51f-7b1bfacff753
relation.isOrgUnitOfPublication 907f32e8-a2ec-47a0-b274-af0eefc912b5
relation.isOrgUnitOfPublication.latestForDiscovery 907f32e8-a2ec-47a0-b274-af0eefc912b5

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: