Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Developing and Implementation of an Optimization Technique for Solar Chimney Power Plant With Machine Learning

dc.contributor.author Kocak, Eyup
dc.contributor.author Bayer, Ozgur
dc.contributor.author Beldek, Ulas
dc.contributor.author Yapic, Ekin Ozgirgin
dc.contributor.author Ayli, Ece
dc.contributor.author Ulucak, Oguzhan
dc.contributor.authorID 59950 tr_TR
dc.contributor.authorID 31329 tr_TR
dc.contributor.authorID 265836 tr_TR
dc.contributor.other 06.06. Makine Mühendisliği
dc.contributor.other 06.08. Mekatronik Mühendisliği
dc.contributor.other 06. Mühendislik Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2022-04-01T12:13:49Z
dc.date.accessioned 2025-09-18T15:44:35Z
dc.date.available 2022-04-01T12:13:49Z
dc.date.available 2025-09-18T15:44:35Z
dc.date.issued 2021
dc.description Bayer, Ozgur/0000-0003-0508-2263; Ozgirgin Yapici, Ekin/0000-0002-7550-5949; Ulucak, Oguzhan/0000-0002-2063-2553 en_US
dc.description.abstract Green energy has seen a huge surge of interest recently due to various environmental and financial reasons. To extract the most out of a renewable system and to go greener, new approaches are evolving. In this paper, the capability of Artificial Neural Network and Adaptive Neuro-Fuzzy Inference System in geometrical optimization of a solar chimney power plant (SCPP) to enhance generated power is investigated to reduce the time cost and errors when optimization is performed with numerical or experimental methods. It is seen that both properly constructed artificial neural networks (ANN) and adaptive-network-based fuzzy inference system (ANFIS) optimized geometries give higher performance than the numerical results. Also, to validate the accuracy of the ANN and ANFIS predictions, the obtained results are compared with the numerical results. Both soft computing methods over predict the power output values with MRE values of 12.36% and 7.25% for ANN and ANFIS, respectively. It is seen that by utilizing ANN and ANFIS algorithms, more power can be extracted from the SCPP system compared to conventional computational fluid dynamics (CFD) optimized geometry with trying a lot more geometries in a notably less time when it is compared with the numerical technique. It is worth mentioning that the optimization method that is developed can be implemented to all engineering problems that need geometric optimization to maximize or minimize the objective function. en_US
dc.description.publishedMonth 5
dc.description.sponsorship METU-BAP project [GAP-302-2020-10245] en_US
dc.description.sponsorship This project is supported by the METU-BAP project (GAP-302-2020-10245). The computations are performed using the facilities of Cankaya University. en_US
dc.identifier.citation Ulucak, Oğuzhan...et al (2021). "Developing and Implementation of an Optimization Technique for Solar Chimney Power Plant With Machine Learning", Journal of Energy Resources Technology-Transactions of the ASME, Vol. 143, No. 5. en_US
dc.identifier.doi 10.1115/1.4050049
dc.identifier.issn 0195-0738
dc.identifier.issn 1528-8994
dc.identifier.scopus 2-s2.0-85107961256
dc.identifier.uri https://doi.org/10.1115/1.4050049
dc.identifier.uri https://hdl.handle.net/20.500.12416/14338
dc.language.iso en en_US
dc.publisher Asme en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Performance Prediction en_US
dc.subject Ann en_US
dc.subject Anfis en_US
dc.subject Scpp en_US
dc.subject Soft Computing en_US
dc.subject Optimization en_US
dc.subject Renewable Energy en_US
dc.title Developing and Implementation of an Optimization Technique for Solar Chimney Power Plant With Machine Learning en_US
dc.title Developing and Implementation of an Optimization Technique for Solar Chimney Power Plant With Machine Learning tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Bayer, Ozgur/0000-0003-0508-2263
gdc.author.id Ozgirgin Yapici, Ekin/0000-0002-7550-5949
gdc.author.id Ulucak, Oguzhan/0000-0002-2063-2553
gdc.author.institutional Koçak, Eyup
gdc.author.institutional Beldek, Ulaş
gdc.author.institutional Aylı, Ülkü Ece
gdc.author.scopusid 57220077206
gdc.author.scopusid 57193872973
gdc.author.scopusid 37017931600
gdc.author.scopusid 15070338100
gdc.author.scopusid 57189516495
gdc.author.scopusid 55371892800
gdc.author.wosid Kocak, Eyup/Hik-2192-2022
gdc.author.wosid Bayer, Özgür/Caf-6447-2022
gdc.author.wosid Ayli, Ulku Ece/J-2906-2016
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Ulucak, Oguzhan] Cankaya Univ, Dept Mechatron Engn, TR-06810 Ankara, Turkey; [Ulucak, Oguzhan] TED Univ, Dept Mech Engn, TR-06560 Ankara, Turkey; [Kocak, Eyup; Beldek, Ulas; Yapic, Ekin Ozgirgin; Ayli, Ece] Cankaya Univ, Dept Mech Engn, TR-06810 Ankara, Turkey; [Bayer, Ozgur] MiddleEast Tech Univ, Dept Mech Engn, TR-06810 Ankara, Turkey en_US
gdc.description.issue 5 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.volume 143 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q3
gdc.identifier.openalex W3127277882
gdc.identifier.wos WOS:000636261800010
gdc.openalex.fwci 1.28938161
gdc.openalex.normalizedpercentile 0.76
gdc.opencitations.count 9
gdc.plumx.crossrefcites 8
gdc.plumx.mendeley 16
gdc.plumx.scopuscites 15
gdc.scopus.citedcount 15
gdc.wos.citedcount 15
relation.isAuthorOfPublication 6ad744ba-3168-41f4-8cc1-ca6ed3c10eee
relation.isAuthorOfPublication cec8dcc4-1230-4d65-9f80-35156c33f801
relation.isAuthorOfPublication cd99bba5-5182-4d17-b1b7-8f9b39a4c494
relation.isAuthorOfPublication.latestForDiscovery 6ad744ba-3168-41f4-8cc1-ca6ed3c10eee
relation.isOrgUnitOfPublication b3982d12-14ba-4f93-ae05-1abca7e3e557
relation.isOrgUnitOfPublication 5b0b2c59-0735-4593-b820-ff3847d58827
relation.isOrgUnitOfPublication 43797d4e-4177-4b74-bd9b-38623b8aeefa
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery b3982d12-14ba-4f93-ae05-1abca7e3e557

Files