Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Sparse representations for online-learning-based hyperspectral image compression

No Thumbnail Available

Date

2015

Journal Title

Journal ISSN

Volume Title

Publisher

Optical Soc Amer

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Events

Abstract

Sparse models provide data representations in the fewest possible number of nonzero elements. This inherent characteristic enables sparse models to be utilized for data compression purposes. Hyperspectral data is large in size. In this paper, a framework for sparsity-based hyperspectral image compression methods using online learning is proposed. There are various sparse optimization models. A comparative analysis of sparse representations in terms of their hyperspectral image compression performance is presented. For this purpose, online-learning-based hyperspectral image compression methods are proposed using four different sparse representations. Results indicate that, independent of the sparsity models, online-learning-based hyperspectral data compression schemes yield the best compression performances for data rates of 0.1 and 0.3 bits per sample, compared to other state-of-the-art hyperspectral data compression techniques, in terms of image quality measured as average peak signal-to-noise ratio.

Description

Keywords

Projections, Persuit

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Ülkü, İ., Töreyin, B.U. (2015). Sparse representations for online-learning-based hyperspectral image compression. Applied Optics, 54(29), 8625-8631. http://dx.doi.org/ 10.1364/AO.54.008625

WoS Q

Scopus Q

Source

Applied Optics

Volume

54

Issue

29

Start Page

8625

End Page

8631