Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Sparse representations for online-learning-based hyperspectral image compression

dc.contributor.authorÜlkü, İrem
dc.contributor.authorTöreyin, Behçet Uğur
dc.contributor.authorID17575tr_TR
dc.contributor.authorID19325tr_TR
dc.date.accessioned2017-03-09T12:25:05Z
dc.date.available2017-03-09T12:25:05Z
dc.date.issued2015
dc.departmentÇankaya Üniversitesi, Mühendislik Fakültesi, Elektrik Elektronik Mühendisliği Bölümüen_US
dc.description.abstractSparse models provide data representations in the fewest possible number of nonzero elements. This inherent characteristic enables sparse models to be utilized for data compression purposes. Hyperspectral data is large in size. In this paper, a framework for sparsity-based hyperspectral image compression methods using online learning is proposed. There are various sparse optimization models. A comparative analysis of sparse representations in terms of their hyperspectral image compression performance is presented. For this purpose, online-learning-based hyperspectral image compression methods are proposed using four different sparse representations. Results indicate that, independent of the sparsity models, online-learning-based hyperspectral data compression schemes yield the best compression performances for data rates of 0.1 and 0.3 bits per sample, compared to other state-of-the-art hyperspectral data compression techniques, in terms of image quality measured as average peak signal-to-noise ratio.en_US
dc.description.publishedMonth10
dc.identifier.citationÜlkü, İ., Töreyin, B.U. (2015). Sparse representations for online-learning-based hyperspectral image compression. Applied Optics, 54(29), 8625-8631. http://dx.doi.org/ 10.1364/AO.54.008625en_US
dc.identifier.doi10.1364/AO.54.008625
dc.identifier.endpage8631en_US
dc.identifier.issn1559-128X
dc.identifier.issue29en_US
dc.identifier.startpage8625en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12416/1419
dc.identifier.volume54en_US
dc.language.isoenen_US
dc.publisherOptical Soc Ameren_US
dc.relation.ispartofApplied Opticsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectProjectionsen_US
dc.subjectPersuiten_US
dc.titleSparse representations for online-learning-based hyperspectral image compressiontr_TR
dc.titleSparse Representations for Online-Learning Hyperspectral Image Compressionen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: