Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Identifying Criminal Organizations From Their Social Network Structures

dc.contributor.author Genc, Burkay
dc.contributor.author Sever, Hayri
dc.contributor.author Cinar, Muhammet Serkan
dc.contributor.authorID 11916 tr_TR
dc.contributor.other 06.01. Bilgisayar Mühendisliği
dc.contributor.other 06. Mühendislik Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2020-01-29T12:07:48Z
dc.date.accessioned 2025-09-18T16:06:49Z
dc.date.available 2020-01-29T12:07:48Z
dc.date.available 2025-09-18T16:06:49Z
dc.date.issued 2019
dc.description Genc, Burkay/0000-0001-5134-1487; Sever, Hayri/0000-0002-8261-0675 en_US
dc.description.abstract Identification of criminal structures within very large social networks is an essential security feat. By identifying such structures, it may be possible to track, neutralize, and terminate the corresponding criminal organizations before they act. We evaluate the effectiveness of three different methods for classifying an unknown network as terrorist, cocaine, or noncriminal. We consider three methods for the identification of network types: evaluating common social network analysis metrics, modeling with a decision tree, and network motif frequency analysis. The empirical results show that these three methods can provide significant improvements in distinguishing all three network types. We show that these methods are viable enough to be used as supporting evidence by security forces in their fight against criminal organizations operating on social networks. en_US
dc.identifier.citation Cinar, Muhammet Serkan; Genc, Burkay; Sever, Hayri, "Identifying criminal organizations from their social network structures", Identifying criminal organizations from their social network structures, Vol. 27, No. 1, pp. 421-436, (2019). en_US
dc.identifier.doi 10.3906/elk-1806-52
dc.identifier.issn 1300-0632
dc.identifier.issn 1303-6203
dc.identifier.scopus 2-s2.0-85063013828
dc.identifier.uri https://doi.org/10.3906/elk-1806-52
dc.identifier.uri https://hdl.handle.net/20.500.12416/14599
dc.language.iso en en_US
dc.publisher Tubitak Scientific & Technological Research Council Turkey en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Criminal Networks en_US
dc.subject Identification en_US
dc.subject Decision Tree en_US
dc.subject Motif Analysis en_US
dc.subject Machine Learning en_US
dc.title Identifying Criminal Organizations From Their Social Network Structures en_US
dc.title Identifying criminal organizations from their social network structures tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Genc, Burkay/0000-0001-5134-1487
gdc.author.id Sever, Hayri/0000-0002-8261-0675
gdc.author.institutional Sever, Hayri
gdc.author.scopusid 24463296200
gdc.author.scopusid 57202163971
gdc.author.scopusid 55902090100
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Cinar, Muhammet Serkan] Hacettepe Univ, Fac Engn, Dept Comp Engn, Ankara, Turkey; [Genc, Burkay] Hacettepe Univ, Inst Populat Studies, Dept Policy & Strategy Studies, Ankara, Turkey; [Sever, Hayri] Cankaya Univ, Fac Engn, Dept Comp Engn, Ankara, Turkey en_US
gdc.description.endpage 436 en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 421 en_US
gdc.description.volume 27 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q4
gdc.identifier.openalex W2914728829
gdc.identifier.trdizinid 336408
gdc.identifier.wos WOS:000456344800031
gdc.openalex.fwci 0.72802008
gdc.openalex.normalizedpercentile 0.76
gdc.opencitations.count 2
gdc.plumx.crossrefcites 1
gdc.plumx.mendeley 22
gdc.plumx.scopuscites 2
gdc.scopus.citedcount 2
gdc.wos.citedcount 1
relation.isAuthorOfPublication a26d16c1-fa24-4ceb-b2c8-8517c96e2534
relation.isAuthorOfPublication.latestForDiscovery a26d16c1-fa24-4ceb-b2c8-8517c96e2534
relation.isOrgUnitOfPublication 12489df3-847d-4936-8339-f3d38607992f
relation.isOrgUnitOfPublication 43797d4e-4177-4b74-bd9b-38623b8aeefa
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 12489df3-847d-4936-8339-f3d38607992f

Files