Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Fuzzy Clustering To Classify Several Time Series Models With Fractional Brownian Motion Errors

No Thumbnail Available

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Journal Issue

Abstract

In real world problems, scientists aim to classify and cluster several time series processes that can be used for a dataset. In this research, for the first time, based on fuzzy clustering method, an approach is applied to classify and cluster several time series models with fractional Brownian motion errors as candidates to fit on a dataset. The ability of the introduced technique is studied using simulation and real world example. (C) 2020 The Authors. Published by Elsevier B.V.

Description

S. Band, Shahab/0000-0001-6109-1311; Noman Qasem, Sultan/0000-0002-6575-161X

Keywords

Classification, Fuzzy Clustering, Fractional Brownian Motion, Non-Stationary, Stationary, Time Series, Rdi

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Mahmoudi, Mohammad Reza...et al. (2021). "Fuzzy clustering to classify several time series models with fractional Brownian motion errors", Alexandria Engineering Journal, Vol. 60, No. 1, pp. 1137-1145.

WoS Q

Q1

Scopus Q

Q1
OpenCitations Logo
OpenCitations Citation Count
20

Source

Volume

60

Issue

1

Start Page

1137

End Page

1145
PlumX Metrics
Citations

CrossRef : 21

Scopus : 20

Captures

Mendeley Readers : 17

SCOPUS™ Citations

20

checked on Nov 29, 2025

Web of Science™ Citations

19

checked on Nov 29, 2025

Page Views

4

checked on Nov 29, 2025

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
3.25106492

Sustainable Development Goals

SDG data is not available