Performance analysis of M-ary pulse position modulation in strong oceanic turbulence
No Thumbnail Available
Date
2018
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Science Bv
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
In this paper, we consider an underwater wireless optical communication (UWOC) system which consists of an M-ary pulse position modulated (PPM) Gaussian optical beam at the transmitter and an avalanche photodiode (APD) at the receiver. In strong oceanic turbulence, we aimed at investigating the system performance in terms of bit error rate (BER) by the help of gamma-gamma channel model. For this purpose, the average power and the aperture averaged scintillation at the finite sized detector are derived by using the extended Huygens-Fresnel principle and the asymptotic Rytov theory, respectively. BER variations are examined versus the average APD gain, modulation order, bit rate as well as the oceanic turbulence parameters, i.e., the rate of dissipation of kinetic energy per unit mass of fluid, the rate of dissipation of mean-squared temperature and the ratio of temperature to salinity contributions to the refractive index spectrum.
Description
Keywords
Optical Wireless Communication, Strong Oceanic Turbulence, M-ary Pulse Position Modulation, Bit Error Rate
Turkish CoHE Thesis Center URL
Fields of Science
Citation
Gökçe, M.C., Baykal, Y., Ata, Y. (2018). Performance analysis of M-ary pulse position modulation in strong oceanic turbulence. Optics Communications, 427, 573-577. http://dx.doi.org/10.1016/j.optcom.2018.07.037
WoS Q
Scopus Q
Source
Optics Communications
Volume
427
Issue
Start Page
573
End Page
577