Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Analysis of mammography images for cancer detection

dc.contributor.author Alshana, Ghassan
dc.date.accessioned 2022-04-07T13:24:09Z
dc.date.available 2022-04-07T13:24:09Z
dc.date.issued 2016
dc.description.abstract Mammography is the best available technique for early detection of breast cancer. The most common breast abnormalities that may indicate breast cancer are masses. Also, there are some signs that can lead to breast cancer diagnosis, such as architectural distortion and bilateral asymmetry. In this study, an algorithm is used to detect breast cancer in mammography images. Four stages are presented: (1) preprocessing, (2) segmentations of regions of interest (ROI), (3) feature selection and extraction, and (4) classification. In the preprocessing stage, the digital mammogram is pruned, 2D-median filter is used to filter the image and unnecessary labels are removed from the breast. In the segmentation stage, global thresholding is used for segmenting the breast. Morphological operations like erosion, dilation, opening and closing are used to enhance the breast. Seeded region growing is used for removing the pectoral muscle and for segmenting the mass in the breast. In the feature selection and extraction stage, intensity features are selected and extracted from the ROI. In the classification stage, the extracted features are fed into artificial neural network (ANN) classifier to classify the mass as malignant or benign. The output of the proposed method would assist radiologists to examine images containing unusual masses more closely and to help them minimize misinterpretation. The method achieved 91.30% sensitivity, 91.30% specificity and 91.30% accuracy resulting from the confusion matrix which is a performance evaluation metric. en_US
dc.description.abstract Mamografi, meme kanserinin erken teşhisi için mevcut en iyi tekniktir. Meme kanserinin belirtileri arasında en yaygın olan anormallikler kitlelerdir. Bu belirtiye ek olarak, mimari bozulma ve bilateral asimetri de meme kanserinin tanısı konusunda yardımcı olabilecek diğer belirtilerdir. Bu çalışmada, mamografi görüntülerinden meme kanserini tespit edebilmek amacıyla bir algoritma kullanılmıştır. Çalışma, ön işleme, ilgili alanın parçalara ayrılması, özellik seçimi ve çıkartılması, ve sınıflandırma olmak üzere 4 aşamadan oluşmaktadır. Ön işleme aşamasında, dijital mamaografi kesilmiş, 2B medyan filtresi kullanılarak görüntü filtrelenmiş ve göğüsden gereksiz etiketler çıkartılmıştır. Parçalara ayırma aşamasında, göğüs bölgesini parçalara ayırmak amacıyla küresel eşikleme metodu kullanılmıştır. Buna ek olarak, göğsü geliştirebilmek için aşındırma, genişleme, açma ve kapama gibi morfolojik işlemler kullanılmıştır. Ayrıca, geliştirilmekte olan tohumlanan bölge pektoral kasların kaldırılmasında ve göğüsde bulunan kitlelerin parçalara ayrılmasında kullanılmıştır. Özellik seçimi ve çıkarma aşamasında, yoğunluk özellikleri seçilerek ilgili alandan çıkartılmıştır. Son olarak sınıflandırma aşamasında ise, kütleleri yararlı ve zararlı şeklinde sınıflandırabilmek amacıyla çıkarılan özellikler yapay sinir ağı sınıflandırıcında kullanılmıştır. Bu çalışmada, sıradışı kitlelerin olduğu görüntüler daha yakından incelenerek çeşitli çıktılar elde edilmiştir. Bu çıktılar, radyologların görüntüleri yanlış yorumlamasını en aza indirerek radyologlara yardımcı olacaktır. Bu yöntem, bir performans ölçme metriği olan hata matrisine göre 91.30% oranında duyarlılık, 91.30% oranında özgüllük ve 91.30% oranında doğruluk elde etmiştir. en_US
dc.identifier.citation Alshana, Ghassan (2016). Analysis of mammography images for cancer detection / Kanser tespiti için mamografik görüntülerin analizi. Yayımlanmış yüksek lisans tezi. Ankara: Çankaya Üniversitesi, Fen Bilimleri Enstitüsü. en_US
dc.identifier.uri https://hdl.handle.net/20.500.12416/5329
dc.language.iso en en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Artificial Neural Network en_US
dc.subject Breast Cancer en_US
dc.subject Classification en_US
dc.subject Mammography en_US
dc.subject Segmentation en_US
dc.subject Yapay Sinir Ağı en_US
dc.subject Meme Kanseri en_US
dc.subject Sınıflandırma en_US
dc.subject Mamografi en_US
dc.subject Parçalara Ayırma en_US
dc.title Analysis of mammography images for cancer detection tr_TR
dc.title Analysis of Mammography Images for Cancer Detection en_US
dc.title.alternative Kanser Tespiti için Mamografik Görüntülerin Analizi en_US
dc.type Master Thesis en_US
dspace.entity.type Publication
gdc.description.department Çankaya Üniversitesi,Fen Bilimleri Enstitüsü, Bilgisayar Mühendisliği Ana Bilim Dalı en_US
gdc.description.endpage 103 en_US
gdc.description.startpage 1 en_US
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 0b9123e4-4136-493b-9ffd-be856af2cdb1

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
GHASSAN ALSHANA.pdf
Size:
2.13 MB
Format:
Adobe Portable Document Format
Description:
Yazar Sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: