Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

On Generalized Asymmetric Harmonic Oscillator With Quadratic Nonlinearity Within Fractional Variational Principles

dc.authorid Asad, Jihad/0000-0002-6862-1634
dc.authorscopusid 7005872966
dc.authorscopusid 34880044900
dc.authorscopusid 8546136600
dc.authorscopusid 57743079400
dc.authorscopusid 8898843900
dc.authorwosid Asad, Jihad/F-5680-2011
dc.authorwosid Jajarmi, Amin/O-7701-2019
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.authorwosid Defterli, Ozlem/Aah-2521-2020
dc.authorwosid Asad, Jihad/P-2975-2016
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Jajarmi, Amin
dc.contributor.author Defterli, Ozlem
dc.contributor.author Mohammad, Noorhan F. AlShaikh
dc.contributor.author Asad, Jihad
dc.contributor.other Matematik
dc.date.accessioned 2025-05-11T17:04:10Z
dc.date.available 2025-05-11T17:04:10Z
dc.date.issued 2024
dc.department Çankaya University en_US
dc.department-temp [Baleanu, Dumitru] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon; [Baleanu, Dumitru] Inst Space Sci, Bucharest, Romania; [Jajarmi, Amin] Univ Bojnord, Dept Elect Engn, Bojnord, Iran; [Defterli, Ozlem] Cankaya Univ, Fac Arts & Sci, Dept Math, Ankara, Turkiye; [Mohammad, Noorhan F. AlShaikh; Asad, Jihad] Palestine Tech Univ, Fac Appl Sci, Dept Phys, Tulkarm, Palestine en_US
dc.description Asad, Jihad/0000-0002-6862-1634 en_US
dc.description.abstract This work studies the nonlinear fractional dynamics of asymmetric harmonic oscillators. The classical description of the physical system is generalized using the principles of fractional variational analysis. As a system of two-coupled fractional differential equations with a quadratic nonlinear component, the fractional Euler-Lagrange equations of the motion of the corresponding system are obtained. The Adams-Bashforth predictor-corrector numerical approach is used to approximate the system's outcomes, which are then simulated comparatively with respect to various model parameter values, including mass, linear and quadratic nonlinear stiffness, and the order of the fractional derivative. The simulations provided the possibility of investigating various dynamical behaviours within the same physical model that is generalized by the use of fractional operators. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1177/14613484241309058
dc.identifier.issn 1461-3484
dc.identifier.issn 2048-4046
dc.identifier.scopus 2-s2.0-85212496772
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.1177/14613484241309058
dc.identifier.uri https://hdl.handle.net/20.500.12416/9632
dc.identifier.wos WOS:001378848400001
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Sage Publications Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 1
dc.subject Fractional Calculus en_US
dc.subject Euler-Lagrange Formulation en_US
dc.subject Quadratic Nonlinear Harmonic Oscillator en_US
dc.subject Numerical Approximation en_US
dc.title On Generalized Asymmetric Harmonic Oscillator With Quadratic Nonlinearity Within Fractional Variational Principles en_US
dc.type Article en_US
dc.wos.citedbyCount 1
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files