Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

New Estimates of Integral Inequalities Via Generalized Proportional Fractional Integral Operator With Respect To Another Function

dc.contributor.author Hammouch, Zakia
dc.contributor.author Jarad, Fahd
dc.contributor.author Chu, Yu-Ming
dc.contributor.author Rashid, Saima
dc.contributor.authorID 234808 tr_TR
dc.contributor.other 02.02. Matematik
dc.contributor.other 02. Fen-Edebiyat Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2022-06-28T11:13:35Z
dc.date.accessioned 2025-09-18T12:49:31Z
dc.date.available 2022-06-28T11:13:35Z
dc.date.available 2025-09-18T12:49:31Z
dc.date.issued 2020
dc.description Hammouch, Zakia/0000-0001-7349-6922 en_US
dc.description.abstract In this paper, the newly proposed concept of the generalized proportional fractional integral operator with respect to another function phi has been utilized to generate integral inequalities using convex function. This new concept will have the option to reduce self-similitudes in the fractional attractors under investigation. We discuss the implications and other consequences of the integral inequalities concerning the generalized proportional fractional integral operator with respect to another function phi are derived here and these outcomes permit us specifically to generalize some classical inequalities. Certain intriguing subsequent consequences of the fundamental hypotheses are also figured. It is to be supposed that this investigation will provide new directions in the quantum theory of capricious nature. en_US
dc.description.sponsorship National Natural Science Foundation of China [11971142, 61673169, 11701176, 11626101, 11601485, 11871202] en_US
dc.description.sponsorship The authors would like to thank the anonymous referees for their valuable suggestions and comments. This work was supported by the National Natural Science Foundation of China (Grant Nos. 11971142, 61673169, 11701176, 11626101, 11601485, 11871202). en_US
dc.identifier.citation Rashid, Saima...et al. (2020). "New estimates of integral inequalities via generalized proportional fractional integral operator with respect to another function", Fractals, Vol. 28, No. 8. en_US
dc.identifier.doi 10.1142/S0218348X20400277
dc.identifier.issn 0218-348X
dc.identifier.issn 1793-6543
dc.identifier.scopus 2-s2.0-85088246494
dc.identifier.uri https://doi.org/10.1142/S0218348X20400277
dc.identifier.uri https://hdl.handle.net/123456789/12384
dc.language.iso en en_US
dc.publisher World Scientific Publ Co Pte Ltd en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Convex Functions en_US
dc.subject Generalized Proportional Fractional Integral Operator With Respect To Another Function en_US
dc.subject Integral Inequalities en_US
dc.title New Estimates of Integral Inequalities Via Generalized Proportional Fractional Integral Operator With Respect To Another Function en_US
dc.title New estimates of integral inequalities via generalized proportional fractional integral operator with respect to another function tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Hammouch, Zakia/0000-0001-7349-6922
gdc.author.institutional Jarad, Fahd
gdc.author.scopusid 57200041124
gdc.author.scopusid 12768922000
gdc.author.scopusid 15622742900
gdc.author.scopusid 9839077200
gdc.author.wosid Rashid, Saima/Aaf-7976-2021
gdc.author.wosid Jarad, Fahd/T-8333-2018
gdc.author.wosid Hammouch, Zakia/D-3532-2011
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Rashid, Saima] Govt Coll Univ, Dept Math, Faisalabad, Pakistan; [Hammouch, Zakia] Moulay Ismail Univ Meknes, Fac Sci & Tech, Errachidia 52000, Morocco; [Hammouch, Zakia] Harran Univ, Dept Math & Sci Educ, Sanliurfa, Turkey; [Jarad, Fahd] Cankaya Univ, Dept Math, TR-06790 Ankara, Turkey; [Chu, Yu-Ming] Huzhou Univ, Dept Math, Huzhou 313000, Peoples R China; [Chu, Yu-Ming] Changsha Univ Sci & Technol, Sch Math & Stat, Changsha 410114, Peoples R China en_US
gdc.description.issue 8 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.volume 28 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.identifier.openalex W3023024123
gdc.identifier.wos WOS:000605620400022
gdc.openalex.fwci 0.35597628
gdc.openalex.normalizedpercentile 0.68
gdc.opencitations.count 8
gdc.plumx.crossrefcites 3
gdc.plumx.mendeley 1
gdc.plumx.scopuscites 13
gdc.scopus.citedcount 13
gdc.wos.citedcount 16
relation.isAuthorOfPublication c818455d-5734-4abd-8d29-9383dae37406
relation.isAuthorOfPublication.latestForDiscovery c818455d-5734-4abd-8d29-9383dae37406
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files