Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Applications of Gudermannian Neural Network for Solving the Sitr Fractal System

dc.contributor.author Umar, Muhammad
dc.contributor.author Raja, Muhammad Asif Zahoor
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Sabir, Zulqurnain
dc.date.accessioned 2024-03-01T07:05:05Z
dc.date.accessioned 2025-09-18T12:10:27Z
dc.date.available 2024-03-01T07:05:05Z
dc.date.available 2025-09-18T12:10:27Z
dc.date.issued 2021
dc.description Sabir, Zulqurnain/0000-0001-7466-6233; Raja, Muhammad Asif Zahoor/0000-0001-9953-822X en_US
dc.description.abstract This study is related to explore the Gudermannian neural network (GNN) for solving a nonlinear SITR COVID-19 fractal system by using the optimization efficiencies of a genetic algorithm (GA), a global search technique and sequential quadratic programming (SQP) and a quick local search scheme, i.e. GNN-GA-SQP. The nonlinear SITR COVID-19 fractal system is dependent on four collections: "susceptible", "infected", "treatment" and "recovered". For the optimization procedures through the GNN-GA-SQP, a merit function is constructed using the nonlinear SITR COVID-19 fractal system and its corresponding initial conditions. The description of each collection of the nonlinear SITR COVID-19 fractal system is provided along with comprehensive detail. The comparison of the achieved numerical result performances of each collection of the nonlinear SITR COVID-19 fractal system is performed with the Adams results to verify the exactness of the designed computational GNN-GA-SQP. The statistical processes based on different operators are presented for 30 independent trials using 5 neurons to authenticate the consistency of the designed computational GNN-GA-SQP. Moreover, the graphs of absolute error (AE), performance indices, and convergence measures along with the boxplots and histograms are also plotted to check the stability, exactness and reliability of the designed computational GNN-GA-SQP. en_US
dc.identifier.citation Sabir, Zulqurnain;...et.al. (2021). "Applications Of Gudermannian Neural Network For Solving The Sitr Fractal System", Fractals, Vol.29, No.1. en_US
dc.identifier.doi 10.1142/S0218348X21502509
dc.identifier.issn 0218-348X
dc.identifier.issn 1793-6543
dc.identifier.scopus 2-s2.0-85119966941
dc.identifier.uri https://doi.org/10.1142/S0218348X21502509
dc.identifier.uri https://hdl.handle.net/20.500.12416/11737
dc.language.iso en en_US
dc.publisher World Scientific Publ Co Pte Ltd en_US
dc.relation.ispartof Fractals
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Gudermannian Function en_US
dc.subject Sitr Covid-19 Fractal System en_US
dc.subject Nonlinear en_US
dc.subject Genetic Algorithm en_US
dc.subject Reference Solutions en_US
dc.subject Sequential Quadratic Programming en_US
dc.title Applications of Gudermannian Neural Network for Solving the Sitr Fractal System en_US
dc.title Applications Of Gudermannian Neural Network For Solving The Sitr Fractal System tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Sabir, Zulqurnain/0000-0001-7466-6233
gdc.author.id Raja, Muhammad Asif Zahoor/0000-0001-9953-822X
gdc.author.scopusid 56184182600
gdc.author.scopusid 57203870179
gdc.author.scopusid 36739939800
gdc.author.scopusid 7005872966
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.author.wosid Sabir, Zulqurnain/Aas-8882-2021
gdc.author.wosid Umar, Muhammad/Itr-7952-2023
gdc.author.wosid Raja, Muhammad Asif Zahoor/D-7325-2013
gdc.author.yokid 56389
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Sabir, Zulqurnain; Umar, Muhammad] Hazara Univ, Dept Math & Stat, Mansehra, Pakistan; [Raja, Muhammad Asif Zahoor] Natl Yunlin Univ Sci & Technol, Future Technol Res Ctr, 123 Univ Rd,Sect 3, Touliu 64002, Yunlin, Taiwan; [Baleanu, Dumitru] Cankaya Univ, Dept Math, Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania en_US
gdc.description.issue 8 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.volume 29 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W3194443538
gdc.identifier.wos WOS:000755102900017
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 26.0
gdc.oaire.influence 3.576844E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Medical epidemiology
gdc.oaire.keywords Gudermannian function
gdc.oaire.keywords Epidemiology
gdc.oaire.keywords Quadratic programming
gdc.oaire.keywords Fractals
gdc.oaire.keywords genetic algorithm
gdc.oaire.keywords nonlinear
gdc.oaire.keywords SITR COVID-19 fractal system
gdc.oaire.keywords sequential quadratic programming
gdc.oaire.keywords Artificial neural networks and deep learning
gdc.oaire.keywords reference solutions
gdc.oaire.popularity 2.3359783E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration International
gdc.openalex.fwci 4.23310725
gdc.openalex.normalizedpercentile 0.95
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 29
gdc.plumx.crossrefcites 2
gdc.plumx.mendeley 6
gdc.plumx.scopuscites 34
gdc.publishedmonth 12
gdc.scopus.citedcount 34
gdc.virtual.author Baleanu, Dumitru
gdc.wos.citedcount 21
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files