Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Artificial intelligence computing analysis of fractional order COVID-19 epidemic model

dc.authorid Abdelli, Nouara/0000-0002-7531-0981
dc.authorscopusid 56072492500
dc.authorscopusid 7005872966
dc.authorscopusid 57220011351
dc.authorscopusid 56004095200
dc.authorscopusid 55326677200
dc.authorscopusid 58087178300
dc.authorwosid Abdelli, Nouara/Aaj-9884-2021
dc.authorwosid Raza, Ali/Abe-1951-2021
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.contributor.author Raza, Ali
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Cheema, Tahir Nawaz
dc.contributor.author Fadhal, Emad
dc.contributor.author Ibrahim, Rashid I. H.
dc.contributor.author Abdelli, Nouara
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2023-11-28T08:11:32Z
dc.date.available 2023-11-28T08:11:32Z
dc.date.issued 2023
dc.department Çankaya University en_US
dc.department-temp [Raza, Ali; Baleanu, Dumitru] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon; [Raza, Ali] Govt Punjab, Govt Maulana Zafar Ali Khan Grad Coll Wazirabad, Dept Math, Higher Educ Dept HED, Lahore 54000, Pakistan; [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkiye; [Baleanu, Dumitru] Inst Space Sci, Magurele 077125, Romania; [Cheema, Tahir Nawaz] Univ Gujrat, Dept Math, Gujrat 52700, Pakistan; [Fadhal, Emad] King Faisal Univ, Coll Sci, Dept Math & Stat, POB 400, Al Hasa 31982, Hofuf, Saudi Arabia; [Ibrahim, Rashid I. H.] King Faisal Univ, Coll Sci, Dept Biol Sci, POB 400, Al Hasa 31982, Hofuf, Saudi Arabia; [Abdelli, Nouara] King Faisal Univ, Dept Basic Sci, POB 400, Al Hasa 31982, Hofuf, Saudi Arabia en_US
dc.description Abdelli, Nouara/0000-0002-7531-0981 en_US
dc.description.abstract Artificial intelligence plays a very prominent role in many fields, and of late, this term has been gaining much more popularity due to recent advances in machine learning. Machine learning is a sphere of artificial intelligence where machines are responsible for doing daily chores and are believed to be more intelligent than humans. Furthermore, artificial intelligence is significant in behavioral, social, physical, and biological engineering, biomathematical sciences, and many more disciplines. Fractional-order modeling of a real-world problem is a powerful tool for understanding the dynamics of the problem. In this study, an investigation into a fractional-order epidemic model of the novel coronavirus (COVID-19) is presented using intelligent computing through Bayesian-regularization backpropagation networks (BRBFNs). The designed BRBFNs are exploited to predict the transmission dynamics of COVID-19 disease by taking the dataset from a fractional numerical method based on the Grunwald-Letnikov backward finite difference. The datasets for the fractional-order mathematical model of COVID-19 for Wuhan and Karachi metropolitan cities are trained with BRBFNs for biased and unbiased input and target values. The proposed technique (BRBFNs) is implemented to estimate the integer and fractional-order COVID-19 spread dynamics. Its reliability, effectiveness, and validation are verified through consistently achieved accuracy metrics that depend on error histograms, regression studies, and mean squared error. en_US
dc.description.publishedMonth 8
dc.description.sponsorship Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia [3859] en_US
dc.description.sponsorship ACKNOWLEDGMENTSThis work was supported by the Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia (Grant No. 3859). en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Raza, Ali...et.al. (2023). "Artificial intelligence computing analysis of fractional order COVID-19 epidemic model", AIP Advances, Vol.13, No.8. en_US
dc.identifier.doi 10.1063/5.0163868
dc.identifier.issn 2158-3226
dc.identifier.issue 8 en_US
dc.identifier.scopus 2-s2.0-85168243310
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.1063/5.0163868
dc.identifier.volume 13 en_US
dc.identifier.wos WOS:001045073000006
dc.identifier.wosquality Q4
dc.language.iso en en_US
dc.publisher Aip Publishing en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 8
dc.title Artificial intelligence computing analysis of fractional order COVID-19 epidemic model tr_TR
dc.title Artificial Intelligence Computing Analysis of Fractional Order Covid-19 Epidemic Model en_US
dc.type Article en_US
dc.wos.citedbyCount 3
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: