Artificial intelligence computing analysis of fractional order COVID-19 epidemic model
dc.authorid | Abdelli, Nouara/0000-0002-7531-0981 | |
dc.authorscopusid | 56072492500 | |
dc.authorscopusid | 7005872966 | |
dc.authorscopusid | 57220011351 | |
dc.authorscopusid | 56004095200 | |
dc.authorscopusid | 55326677200 | |
dc.authorscopusid | 58087178300 | |
dc.authorwosid | Abdelli, Nouara/Aaj-9884-2021 | |
dc.authorwosid | Raza, Ali/Abe-1951-2021 | |
dc.authorwosid | Baleanu, Dumitru/B-9936-2012 | |
dc.contributor.author | Raza, Ali | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Cheema, Tahir Nawaz | |
dc.contributor.author | Fadhal, Emad | |
dc.contributor.author | Ibrahim, Rashid I. H. | |
dc.contributor.author | Abdelli, Nouara | |
dc.contributor.authorID | 56389 | tr_TR |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2023-11-28T08:11:32Z | |
dc.date.available | 2023-11-28T08:11:32Z | |
dc.date.issued | 2023 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Raza, Ali; Baleanu, Dumitru] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon; [Raza, Ali] Govt Punjab, Govt Maulana Zafar Ali Khan Grad Coll Wazirabad, Dept Math, Higher Educ Dept HED, Lahore 54000, Pakistan; [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkiye; [Baleanu, Dumitru] Inst Space Sci, Magurele 077125, Romania; [Cheema, Tahir Nawaz] Univ Gujrat, Dept Math, Gujrat 52700, Pakistan; [Fadhal, Emad] King Faisal Univ, Coll Sci, Dept Math & Stat, POB 400, Al Hasa 31982, Hofuf, Saudi Arabia; [Ibrahim, Rashid I. H.] King Faisal Univ, Coll Sci, Dept Biol Sci, POB 400, Al Hasa 31982, Hofuf, Saudi Arabia; [Abdelli, Nouara] King Faisal Univ, Dept Basic Sci, POB 400, Al Hasa 31982, Hofuf, Saudi Arabia | en_US |
dc.description | Abdelli, Nouara/0000-0002-7531-0981 | en_US |
dc.description.abstract | Artificial intelligence plays a very prominent role in many fields, and of late, this term has been gaining much more popularity due to recent advances in machine learning. Machine learning is a sphere of artificial intelligence where machines are responsible for doing daily chores and are believed to be more intelligent than humans. Furthermore, artificial intelligence is significant in behavioral, social, physical, and biological engineering, biomathematical sciences, and many more disciplines. Fractional-order modeling of a real-world problem is a powerful tool for understanding the dynamics of the problem. In this study, an investigation into a fractional-order epidemic model of the novel coronavirus (COVID-19) is presented using intelligent computing through Bayesian-regularization backpropagation networks (BRBFNs). The designed BRBFNs are exploited to predict the transmission dynamics of COVID-19 disease by taking the dataset from a fractional numerical method based on the Grunwald-Letnikov backward finite difference. The datasets for the fractional-order mathematical model of COVID-19 for Wuhan and Karachi metropolitan cities are trained with BRBFNs for biased and unbiased input and target values. The proposed technique (BRBFNs) is implemented to estimate the integer and fractional-order COVID-19 spread dynamics. Its reliability, effectiveness, and validation are verified through consistently achieved accuracy metrics that depend on error histograms, regression studies, and mean squared error. | en_US |
dc.description.publishedMonth | 8 | |
dc.description.sponsorship | Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia [3859] | en_US |
dc.description.sponsorship | ACKNOWLEDGMENTSThis work was supported by the Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia (Grant No. 3859). | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Raza, Ali...et.al. (2023). "Artificial intelligence computing analysis of fractional order COVID-19 epidemic model", AIP Advances, Vol.13, No.8. | en_US |
dc.identifier.doi | 10.1063/5.0163868 | |
dc.identifier.issn | 2158-3226 | |
dc.identifier.issue | 8 | en_US |
dc.identifier.scopus | 2-s2.0-85168243310 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.uri | https://doi.org/10.1063/5.0163868 | |
dc.identifier.volume | 13 | en_US |
dc.identifier.wos | WOS:001045073000006 | |
dc.identifier.wosquality | Q4 | |
dc.language.iso | en | en_US |
dc.publisher | Aip Publishing | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.scopus.citedbyCount | 8 | |
dc.title | Artificial intelligence computing analysis of fractional order COVID-19 epidemic model | tr_TR |
dc.title | Artificial Intelligence Computing Analysis of Fractional Order Covid-19 Epidemic Model | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 3 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: