Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

An Artificial Neural Network-Based Stock Trading System Using Technical Analysis And Big Data Framework

dc.authorid Ozbayoglu, Murat/0000-0001-7998-5735
dc.authorid Dogdu, Erdogan/0000-0001-5987-0164
dc.authorscopusid 57207586168
dc.authorscopusid 57947593100
dc.authorscopusid 6603501593
dc.authorwosid Ozbayoglu, Murat/H-2328-2011
dc.contributor.author Sezer, Omer Berat
dc.contributor.author Doğdu, Erdoğan
dc.contributor.author Ozbayoglu, A. Murat
dc.contributor.author Dogdu, Erdogan
dc.contributor.other Bilgisayar Mühendisliği
dc.date.accessioned 2020-05-12T04:12:40Z
dc.date.available 2020-05-12T04:12:40Z
dc.date.issued 2017
dc.department Çankaya University en_US
dc.department-temp [Sezer, Omer Berat; Ozbayoglu, A. Murat] TOBB Univ Econ & Technol, Ankara, Turkey; [Dogdu, Erdogan] Cankaya Univ, Georgia State Univ Adj, Ankara, Turkey en_US
dc.description Ozbayoglu, Murat/0000-0001-7998-5735; Dogdu, Erdogan/0000-0001-5987-0164 en_US
dc.description.abstract In this paper, a neural network-based stock price prediction and trading system using technical analysis indicators is presented. The model developed first converts the financial time series data into a series of buy-sell-hold trigger signals using the most commonly preferred technical analysis indicators. Then, a Multilayer Perceptron (MLP) artificial neural network (ANN) model is trained in the learning stage on the daily stock prices between 1997 and 2007 for all of the Dow30 stocks. Apache Spark big data framework is used in the training stage. The trained model is then tested with data from 2007 to 2017. The results indicate that by choosing the most appropriate technical indicators, the neural network model can achieve comparable results against the Buy and Hold strategy in most of the cases. Furthermore, fine tuning the technical indicators and/or optimization strategy can enhance the overall trading performance. en_US
dc.description.publishedMonth 4
dc.description.woscitationindex Conference Proceedings Citation Index - Science
dc.identifier.citation Sezer, O.B.; Ozbayoglu, A.M.; Dogdu, E., "An Artificial Neural Network-Based Stock Trading System Using Technical Analysis And Big Data Framework",Proceedings of the Southeast Conference, Acmse 2017, pp. 223-226, (2017). en_US
dc.identifier.doi 10.1145/3077286.3077294
dc.identifier.endpage 226 en_US
dc.identifier.isbn 9781450350242
dc.identifier.scopus 2-s2.0-85021417788
dc.identifier.scopusquality N/A
dc.identifier.startpage 223 en_US
dc.identifier.uri https://doi.org/10.1145/3077286.3077294
dc.identifier.wos WOS:000945372900042
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher Assoc Computing Machinery en_US
dc.relation.ispartof ACM Southeast Regional Conference -- APR 13-17, 2017 -- Kennesaw, GA en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 50
dc.subject Stock Market en_US
dc.subject Artificial Neural Network en_US
dc.subject Multi Layer Perceptron en_US
dc.subject Algorithmic Trading en_US
dc.subject Technical Analysis en_US
dc.title An Artificial Neural Network-Based Stock Trading System Using Technical Analysis And Big Data Framework tr_TR
dc.title An Artificial Neural Network-Based Stock Trading System Using Technical Analysis and Big Data Framework en_US
dc.type Conference Object en_US
dc.wos.citedbyCount 29
dspace.entity.type Publication
relation.isAuthorOfPublication 0d453674-7998-4d57-a06c-03e13bb1e314
relation.isAuthorOfPublication.latestForDiscovery 0d453674-7998-4d57-a06c-03e13bb1e314
relation.isOrgUnitOfPublication 12489df3-847d-4936-8339-f3d38607992f
relation.isOrgUnitOfPublication.latestForDiscovery 12489df3-847d-4936-8339-f3d38607992f

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: