Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Comparative Evaluation of YOLO and Gemini AI Models for Road Damage Detection and Mapping

dc.contributor.author Demirel, Zeynep
dc.contributor.author Nasraldeen, Shvan Tahir
dc.contributor.author Pehlivan, Oyku
dc.contributor.author Shoman, Sarmad
dc.contributor.author Albdairi, Mustafa
dc.contributor.author Almusawi, Ali
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2025-11-06T17:21:21Z
dc.date.available 2025-11-06T17:21:21Z
dc.date.issued 2025
dc.description.abstract Efficient detection of road surface defects is vital for timely maintenance and traffic safety. This study introduces a novel AI-powered web framework, TriRoad AI, that integrates multiple versions of the You Only Look Once (YOLO) object detection algorithms-specifically YOLOv8 and YOLOv11-for automated detection of potholes and cracks. A user-friendly browser interface was developed to enable real-time image analysis, confidence-based prediction filtering, and severity-based geolocation mapping using OpenStreetMap. Experimental evaluation was conducted using two datasets: one from online sources and another from field-collected images in Ankara, Turkey. YOLOv8 achieved a mean accuracy of 88.43% on internet-sourced images, while YOLOv11-B demonstrated higher robustness in challenging field environments with a detection accuracy of 46.15%, and YOLOv8 followed closely with 44.92% on mixed field images. The Gemini AI model, although highly effective in controlled environments (97.64% detection accuracy), exhibited a significant performance drop of up to 80% in complex field scenarios, with its accuracy falling to 18.50%. The proposed platform's uniqueness lies in its fully integrated, browser-based design, requiring no device-specific installation, and its incorporation of severity classification with interactive geospatial visualization. These contributions address current gaps in generalization, accessibility, and practical deployment, offering a scalable solution for smart infrastructure monitoring and preventive maintenance planning in urban environments. en_US
dc.identifier.doi 10.3390/futuretransp5030091
dc.identifier.issn 2673-7590
dc.identifier.scopus 2-s2.0-105017488332
dc.identifier.uri https://doi.org/10.3390/futuretransp5030091
dc.identifier.uri https://hdl.handle.net/20.500.12416/15701
dc.language.iso en en_US
dc.publisher MDPI en_US
dc.relation.ispartof Future Transportation en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Road Damage Detection en_US
dc.subject YOLOv8 en_US
dc.subject Deep Learning en_US
dc.subject AI-Based Detection en_US
dc.subject Pothole Detection en_US
dc.subject Crack Detection en_US
dc.title Comparative Evaluation of YOLO and Gemini AI Models for Road Damage Detection and Mapping
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 60120951400
gdc.author.scopusid 59551946800
gdc.author.scopusid 60121201900
gdc.author.scopusid 58245009300
gdc.author.scopusid 59285762700
gdc.author.scopusid 57219532302
gdc.author.wosid Albdairi, Mustafa/Jvz-1821-2024
gdc.author.wosid Almusawi, Ali/Khz-5459-2024
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Demirel, Zeynep; Pehlivan, Oyku; Albdairi, Mustafa; Almusawi, Ali] Cankaya Univ, Fac Engn, Dept Civil Engn, TR-06815 Ankara, Turkiye; [Nasraldeen, Shvan Tahir] Univ Kirkuk, Fac Engn, Dept Civil Engn, Kirkuk 36013, Iraq; [Shoman, Sarmad] Univ Kufa, Fac Engn, Civil Engn Dept, Najaf 54001, Iraq en_US
gdc.description.issue 3 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.volume 5 en_US
gdc.description.woscitationindex Emerging Sources Citation Index
gdc.description.wosquality N/A
gdc.identifier.openalex W4412556427
gdc.identifier.wos WOS:001580858400001
gdc.openalex.fwci 2.39630643
gdc.openalex.normalizedpercentile 0.86
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 0
gdc.plumx.mendeley 7
gdc.plumx.newscount 1
gdc.plumx.scopuscites 1
gdc.scopus.citedcount 1
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 0b9123e4-4136-493b-9ffd-be856af2cdb1

Files