Double-Quasi Numerical Method for the Variable-Order Time Fractional and Riesz Space Fractional Reaction-Diffusion Equation Involving Derivatives in Caputo-Fabrizio Sense
| dc.contributor.author | Pandey, Prashant | |
| dc.contributor.author | Gomez-Aguilar, J. F. | |
| dc.contributor.author | Baleanu, D. | |
| dc.contributor.author | Kumar, Sachin | |
| dc.date.accessioned | 2022-04-06T11:21:44Z | |
| dc.date.accessioned | 2025-09-18T14:09:25Z | |
| dc.date.available | 2022-04-06T11:21:44Z | |
| dc.date.available | 2025-09-18T14:09:25Z | |
| dc.date.issued | 2020 | |
| dc.description | Kumar, Sachin/0000-0002-4924-0879 | en_US |
| dc.description.abstract | Our motive in this scientific contribution is to deal with nonlinear reaction-diffusion equation having both space and time variable order. The fractional derivatives which are used are non-singular having exponential kernel. These derivatives are also known as Caputo-Fabrizio derivatives. In our model, time fractional derivative is Caputo type while spatial derivative is variable-order Riesz fractional type. To approximate the variable-order time fractional derivative, we used a difference scheme based upon the Taylor series formula. While approximating the variable order spatial derivatives, we apply the quasi-wavelet-based numerical method. Here, double-quasi-wavelet numerical method is used to investigate this type of model. The discretization of boundary conditions with the help of quasi-wavelet is discussed. We have depicted the efficiency and accuracy of this method by solving the some particular cases of our model. The error tables and graphs clearly show that our method has desired accuracy. | en_US |
| dc.description.sponsorship | CONACyT: Catedras CONACyT para jovenes investigadores; SNI-CONACyT | en_US |
| dc.description.sponsorship | Jose Francisco Gomez-Aguilar acknowledges the support provided by CONACyT: Catedras CONACyT para jovenes investigadores 2014. Jose Francisco Gomez-Aguilar acknowledges the support provided by SNI-CONACyT. | en_US |
| dc.identifier.citation | Kumar, Sachin...et al. (2020). "DOUBLE-QUASI-WAVELET NUMERICAL METHOD FOR THE VARIABLE-ORDER TIME FRACTIONAL AND RIESZ SPACE FRACTIONAL REACTION-DIFFUSION EQUATION INVOLVING DERIVATIVES IN CAPUTO-FABRIZIO SENSE", Fractals-Complex Geometry Patterns and Scaling in Nature and Society, Vol. 28, No. 8. | en_US |
| dc.identifier.doi | 10.1142/S0218348X20400472 | |
| dc.identifier.issn | 0218-348X | |
| dc.identifier.issn | 1793-6543 | |
| dc.identifier.scopus | 2-s2.0-85092895164 | |
| dc.identifier.uri | https://doi.org/10.1142/S0218348X20400472 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/13371 | |
| dc.language.iso | en | en_US |
| dc.publisher | World Scientific Publ Co Pte Ltd | en_US |
| dc.relation.ispartof | Fractals | |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Fractional Pde | en_US |
| dc.subject | Diffusion Equation | en_US |
| dc.subject | Caputo– | en_US |
| dc.subject | Fabrizio Fractional Derivative | en_US |
| dc.subject | Variable-Order Derivatives | en_US |
| dc.subject | Riesz Derivative | en_US |
| dc.subject | Quasi-Wavelets | en_US |
| dc.title | Double-Quasi Numerical Method for the Variable-Order Time Fractional and Riesz Space Fractional Reaction-Diffusion Equation Involving Derivatives in Caputo-Fabrizio Sense | en_US |
| dc.title | DOUBLE-QUASI-WAVELET NUMERICAL METHOD FOR THE VARIABLE-ORDER TIME FRACTIONAL AND RIESZ SPACE FRACTIONAL REACTION-DIFFUSION EQUATION INVOLVING DERIVATIVES IN CAPUTO-FABRIZIO SENSE | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Kumar, Sachin/0000-0002-4924-0879 | |
| gdc.author.scopusid | 59487381600 | |
| gdc.author.scopusid | 57208083605 | |
| gdc.author.scopusid | 55389111400 | |
| gdc.author.scopusid | 7005872966 | |
| gdc.author.wosid | Gómez Aguilar, José/I-7027-2019 | |
| gdc.author.wosid | Kumar, Sachin/Aaq-4840-2020 | |
| gdc.author.wosid | Baleanu, Dumitru/B-9936-2012 | |
| gdc.author.yokid | 56389 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Kumar, Sachin; Pandey, Prashant] Indian Inst Technol BHU, Dept Math Sci, Varanasi 221005, Uttar Pradesh, India; [Kumar, Sachin; Pandey, Prashant] Govt MGM PG Coll, Dept Math, Itarsi 461111, India; [Gomez-Aguilar, J. F.] CENIDET, CONACyT Tecnol Nacl Mexico, Interior Internado Palmira S-N, Cuernavaca 62490, Morelos, Mexico; [Baleanu, D.] Cankaya Univ, Dept Math, Ankara, Turkey; [Baleanu, D.] Inst Space Sci, Bucharest, Romania; [Baleanu, D.] China Med Univ, Dept Med Res, China Med Univ Hosp, Taichung, Taiwan | en_US |
| gdc.description.issue | 8 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 2040047 | |
| gdc.description.volume | 28 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W3022633872 | |
| gdc.identifier.wos | WOS:000605620400005 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.accesstype | HYBRID | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 2.0 | |
| gdc.oaire.influence | 2.5874882E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | Artificial intelligence | |
| gdc.oaire.keywords | Economics | |
| gdc.oaire.keywords | Mathematical analysis | |
| gdc.oaire.keywords | Convergence Analysis of Iterative Methods for Nonlinear Equations | |
| gdc.oaire.keywords | Numerical Methods for Singularly Perturbed Problems | |
| gdc.oaire.keywords | FOS: Mathematics | |
| gdc.oaire.keywords | Reaction-Diffusion Equations | |
| gdc.oaire.keywords | Variable (mathematics) | |
| gdc.oaire.keywords | Biology | |
| gdc.oaire.keywords | Anomalous Diffusion Modeling and Analysis | |
| gdc.oaire.keywords | Order (exchange) | |
| gdc.oaire.keywords | Numerical Analysis | |
| gdc.oaire.keywords | Ecology | |
| gdc.oaire.keywords | Time-Fractional Diffusion Equation | |
| gdc.oaire.keywords | Fractional calculus | |
| gdc.oaire.keywords | Pure mathematics | |
| gdc.oaire.keywords | Applied mathematics | |
| gdc.oaire.keywords | Computer science | |
| gdc.oaire.keywords | Fractional Derivatives | |
| gdc.oaire.keywords | Modeling and Simulation | |
| gdc.oaire.keywords | FOS: Biological sciences | |
| gdc.oaire.keywords | Physical Sciences | |
| gdc.oaire.keywords | Kernel (algebra) | |
| gdc.oaire.keywords | Riesz potential | |
| gdc.oaire.keywords | Fractional Calculus | |
| gdc.oaire.keywords | Wavelet | |
| gdc.oaire.keywords | Type (biology) | |
| gdc.oaire.keywords | Mathematics | |
| gdc.oaire.keywords | Finance | |
| gdc.oaire.keywords | Discretization | |
| gdc.oaire.keywords | Riesz derivative | |
| gdc.oaire.keywords | variable-order derivatives | |
| gdc.oaire.keywords | Finite difference methods for initial value and initial-boundary value problems involving PDEs | |
| gdc.oaire.keywords | Numerical methods for wavelets | |
| gdc.oaire.keywords | fractional PDE | |
| gdc.oaire.keywords | Caputo-Fabrizio fractional derivative | |
| gdc.oaire.keywords | diffusion equation | |
| gdc.oaire.keywords | quasi-wavelets | |
| gdc.oaire.keywords | Series expansions (e.g., Taylor, Lidstone series, but not Fourier series) | |
| gdc.oaire.keywords | Fractional partial differential equations | |
| gdc.oaire.keywords | Error bounds for initial value and initial-boundary value problems involving PDEs | |
| gdc.oaire.keywords | Reaction-diffusion equations | |
| gdc.oaire.popularity | 2.9987848E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.oaire.sciencefields | 0103 physical sciences | |
| gdc.oaire.sciencefields | 0101 mathematics | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 0.07119526 | |
| gdc.openalex.normalizedpercentile | 0.42 | |
| gdc.opencitations.count | 2 | |
| gdc.plumx.mendeley | 2 | |
| gdc.plumx.scopuscites | 3 | |
| gdc.publishedmonth | 12 | |
| gdc.scopus.citedcount | 3 | |
| gdc.virtual.author | Baleanu, Dumitru | |
| gdc.wos.citedcount | 3 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |
