Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Double-Quasi Numerical Method for the Variable-Order Time Fractional and Riesz Space Fractional Reaction-Diffusion Equation Involving Derivatives in Caputo-Fabrizio Sense

dc.contributor.author Pandey, Prashant
dc.contributor.author Gomez-Aguilar, J. F.
dc.contributor.author Baleanu, D.
dc.contributor.author Kumar, Sachin
dc.contributor.authorID 56389 tr_TR
dc.contributor.other 02.02. Matematik
dc.contributor.other 02. Fen-Edebiyat Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2022-04-06T11:21:44Z
dc.date.accessioned 2025-09-18T14:09:25Z
dc.date.available 2022-04-06T11:21:44Z
dc.date.available 2025-09-18T14:09:25Z
dc.date.issued 2020
dc.description Kumar, Sachin/0000-0002-4924-0879 en_US
dc.description.abstract Our motive in this scientific contribution is to deal with nonlinear reaction-diffusion equation having both space and time variable order. The fractional derivatives which are used are non-singular having exponential kernel. These derivatives are also known as Caputo-Fabrizio derivatives. In our model, time fractional derivative is Caputo type while spatial derivative is variable-order Riesz fractional type. To approximate the variable-order time fractional derivative, we used a difference scheme based upon the Taylor series formula. While approximating the variable order spatial derivatives, we apply the quasi-wavelet-based numerical method. Here, double-quasi-wavelet numerical method is used to investigate this type of model. The discretization of boundary conditions with the help of quasi-wavelet is discussed. We have depicted the efficiency and accuracy of this method by solving the some particular cases of our model. The error tables and graphs clearly show that our method has desired accuracy. en_US
dc.description.publishedMonth 12
dc.description.sponsorship CONACyT: Catedras CONACyT para jovenes investigadores; SNI-CONACyT en_US
dc.description.sponsorship Jose Francisco Gomez-Aguilar acknowledges the support provided by CONACyT: Catedras CONACyT para jovenes investigadores 2014. Jose Francisco Gomez-Aguilar acknowledges the support provided by SNI-CONACyT. en_US
dc.identifier.citation Kumar, Sachin...et al. (2020). "DOUBLE-QUASI-WAVELET NUMERICAL METHOD FOR THE VARIABLE-ORDER TIME FRACTIONAL AND RIESZ SPACE FRACTIONAL REACTION-DIFFUSION EQUATION INVOLVING DERIVATIVES IN CAPUTO-FABRIZIO SENSE", Fractals-Complex Geometry Patterns and Scaling in Nature and Society, Vol. 28, No. 8. en_US
dc.identifier.doi 10.1142/S0218348X20400472
dc.identifier.issn 0218-348X
dc.identifier.issn 1793-6543
dc.identifier.scopus 2-s2.0-85092895164
dc.identifier.uri https://doi.org/10.1142/S0218348X20400472
dc.identifier.uri https://hdl.handle.net/20.500.12416/13371
dc.language.iso en en_US
dc.publisher World Scientific Publ Co Pte Ltd en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Fractional Pde en_US
dc.subject Diffusion Equation en_US
dc.subject Caputo&#8211 en_US
dc.subject Fabrizio Fractional Derivative en_US
dc.subject Variable-Order Derivatives en_US
dc.subject Riesz Derivative en_US
dc.subject Quasi-Wavelets en_US
dc.title Double-Quasi Numerical Method for the Variable-Order Time Fractional and Riesz Space Fractional Reaction-Diffusion Equation Involving Derivatives in Caputo-Fabrizio Sense en_US
dc.title DOUBLE-QUASI-WAVELET NUMERICAL METHOD FOR THE VARIABLE-ORDER TIME FRACTIONAL AND RIESZ SPACE FRACTIONAL REACTION-DIFFUSION EQUATION INVOLVING DERIVATIVES IN CAPUTO-FABRIZIO SENSE tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Kumar, Sachin/0000-0002-4924-0879
gdc.author.institutional Baleanu, Dumitru
gdc.author.scopusid 59487381600
gdc.author.scopusid 57208083605
gdc.author.scopusid 55389111400
gdc.author.scopusid 7005872966
gdc.author.wosid Gómez Aguilar, José/I-7027-2019
gdc.author.wosid Kumar, Sachin/Aaq-4840-2020
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Kumar, Sachin; Pandey, Prashant] Indian Inst Technol BHU, Dept Math Sci, Varanasi 221005, Uttar Pradesh, India; [Kumar, Sachin; Pandey, Prashant] Govt MGM PG Coll, Dept Math, Itarsi 461111, India; [Gomez-Aguilar, J. F.] CENIDET, CONACyT Tecnol Nacl Mexico, Interior Internado Palmira S-N, Cuernavaca 62490, Morelos, Mexico; [Baleanu, D.] Cankaya Univ, Dept Math, Ankara, Turkey; [Baleanu, D.] Inst Space Sci, Bucharest, Romania; [Baleanu, D.] China Med Univ, Dept Med Res, China Med Univ Hosp, Taichung, Taiwan en_US
gdc.description.issue 8 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.volume 28 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.identifier.openalex W3022633872
gdc.identifier.wos WOS:000605620400005
gdc.openalex.fwci 0.07119526
gdc.openalex.normalizedpercentile 0.41
gdc.opencitations.count 2
gdc.plumx.mendeley 2
gdc.plumx.scopuscites 3
gdc.scopus.citedcount 2
gdc.wos.citedcount 3
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files