Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

A New Causal Discovery Heuristic

dc.contributor.author Tarim, S. A.
dc.contributor.author Ozkan, I.
dc.contributor.author Prestwich, S. D.
dc.contributor.authorID 6641 tr_TR
dc.contributor.authorID 169580 tr_TR
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2018-09-17T09:26:47Z
dc.date.accessioned 2025-09-18T13:27:55Z
dc.date.available 2018-09-17T09:26:47Z
dc.date.available 2025-09-18T13:27:55Z
dc.date.issued 2018
dc.description Tarim, S. Armagan/0000-0001-5601-3968; Ozkan, Ibrahim/0000-0002-1092-8123 en_US
dc.description.abstract Probabilistic methods for causal discovery are based on the detection of patterns of correlation between variables. They are based on statistical theory and have revolutionised the study of causality. However, when correlation itself is unreliable, so are probabilistic methods: unusual data can lead to spurious causal links, while nonmonotonic functional relationships between variables can prevent the detection of causal links. We describe a new heuristic method for inferring causality between two continuous variables, based on randomness and unimodality tests and making few assumptions about the data. We evaluate the method against probabilistic and additive noise algorithms on real and artificial datasets, and show that it performs competitively. en_US
dc.description.publishedMonth 4
dc.description.sponsorship Science Foundation Ireland (SFI) [SFI/12/RC/2289] en_US
dc.description.sponsorship Our research was aided by the availability of benchmarks in the UCI Machine Learning Repository [19] and the Cause Effect Pairs collection of [21]. This work was supported in part by Science Foundation Ireland (SFI) under Grant Number SFI/12/RC/2289. en_US
dc.identifier.citation Prestwich, S.D., Tarım, S.A., Özkan, I. (2018). A new causal discovery heuristic. Annals of Mathematics and Artificial Intelligence, 82(4), 245-259. http://dx.doi.org/10.1016/10.1007/s10472-018-9575-0 en_US
dc.identifier.doi 10.1007/s10472-018-9575-0
dc.identifier.issn 1012-2443
dc.identifier.issn 1573-7470
dc.identifier.scopus 2-s2.0-85043705539
dc.identifier.uri https://doi.org/10.1007/s10472-018-9575-0
dc.identifier.uri https://hdl.handle.net/123456789/13083
dc.language.iso en en_US
dc.publisher Springer en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Causality en_US
dc.subject Randomness en_US
dc.subject Unimodality en_US
dc.title A New Causal Discovery Heuristic en_US
dc.title A new causal discovery heuristic tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Tarim, S. Armagan/0000-0001-5601-3968
gdc.author.id Ozkan, Ibrahim/0000-0002-1092-8123
gdc.author.scopusid 7004234709
gdc.author.scopusid 6506794189
gdc.author.scopusid 23482661200
gdc.author.wosid Tarim, S./B-4414-2010
gdc.author.wosid Ozkan, Ibrahim/I-8714-2013
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Prestwich, S. D.] Univ Coll Cork, Dept Comp Sci, Insight Ctr Data Analyt, Cork, Ireland; [Tarim, S. A.] Cankaya Univ, Dept Management, Ankara, Turkey; [Ozkan, I.] Hacettepe Univ, Dept Econ, Ankara, Turkey en_US
gdc.description.endpage 259 en_US
gdc.description.issue 4 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 245 en_US
gdc.description.volume 82 en_US
gdc.description.woscitationindex Science Citation Index Expanded - Social Science Citation Index
gdc.description.wosquality Q3
gdc.identifier.openalex W2790618411
gdc.identifier.wos WOS:000433548900004
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.02
gdc.opencitations.count 1
gdc.plumx.facebookshareslikecount 1
gdc.plumx.mendeley 14
gdc.plumx.scopuscites 2
gdc.scopus.citedcount 2
gdc.wos.citedcount 1
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 0b9123e4-4136-493b-9ffd-be856af2cdb1

Files