Approximation of Solutions for Nonlinear Functional Integral Equations
| dc.contributor.author | Pathak, Vijai Kumar | |
| dc.contributor.author | Baleanu, Dumitru | |
| dc.contributor.author | Mishra, Lakshmi Narayan | |
| dc.contributor.authorID | 56389 | tr_TR |
| dc.contributor.other | 02.02. Matematik | |
| dc.contributor.other | 02. Fen-Edebiyat Fakültesi | |
| dc.contributor.other | 01. Çankaya Üniversitesi | |
| dc.date.accessioned | 2024-02-01T12:48:44Z | |
| dc.date.accessioned | 2025-09-18T13:27:26Z | |
| dc.date.available | 2024-02-01T12:48:44Z | |
| dc.date.available | 2025-09-18T13:27:26Z | |
| dc.date.issued | 2022 | |
| dc.description | Mishra, Lakshmi Narayan/0000-0001-7774-7290; Pathak, Vijai Kumar/0000-0003-2477-6666 | en_US |
| dc.description.abstract | In this article, we consider a class of nonlinear functional integral equations, motivated by an equation that offers increasing evidence to the extant literature through replication studies. We investigate the existence of solution for nonlinear functional integral equations on Banach space C[0, 1]. We use the technique of the generalized Darbo's fixed-point theorem associated with the measure of noncompactness (MNC) to prove our existence result. Also, we have given two examples of the applicability of established existence result in the theory of functional integral equations. Further, we construct an efficient iterative algorithm to compute the solution of the first example, by employing the modified homotopy perturbation (MHP) method associated with Adomian decomposition. Moreover, the condition of convergence and an upper bound of errors are presented. | en_US |
| dc.identifier.citation | Mishra, Lakshmi Narayan; Pathak, Vijai Kumar; Baleanu, Dumitru. (2022). "Approximation of solutions for nonlinear functional integral equations", AIMS Mathematics, Vol.7, No.9, pp.17486-17506. | en_US |
| dc.identifier.doi | 10.3934/math.2022964 | |
| dc.identifier.issn | 2473-6988 | |
| dc.identifier.scopus | 2-s2.0-85135252556 | |
| dc.identifier.uri | https://doi.org/10.3934/math.2022964 | |
| dc.identifier.uri | https://hdl.handle.net/123456789/12942 | |
| dc.language.iso | en | en_US |
| dc.publisher | Amer inst Mathematical Sciences-aims | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Measure Of Noncompactness | en_US |
| dc.subject | Nonlinear Functional Integral Equation | en_US |
| dc.subject | Fixed Point Theorem | en_US |
| dc.subject | Modified Homotopy Perturbation | en_US |
| dc.title | Approximation of Solutions for Nonlinear Functional Integral Equations | en_US |
| dc.title | Approximation of solutions for nonlinear functional integral equations | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Mishra, Lakshmi Narayan/0000-0001-7774-7290 | |
| gdc.author.id | Pathak, Vijai Kumar/0000-0003-2477-6666 | |
| gdc.author.institutional | Baleanu, Dumitru | |
| gdc.author.scopusid | 57811155100 | |
| gdc.author.scopusid | 36141913100 | |
| gdc.author.scopusid | 7005872966 | |
| gdc.author.wosid | Pathak, Dr. Vijai/Abt-8842-2022 | |
| gdc.author.wosid | Baleanu, Dumitru/B-9936-2012 | |
| gdc.author.wosid | Mishra, Lakshmi Narayan/O-8113-2017 | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Mishra, Lakshmi Narayan; Pathak, Vijai Kumar] Vellore Inst Technol, Sch Adv Sci, Dept Math, Vellore 632014, Tamil Nadu, India; [Baleanu, Dumitru] Cankaya Univ, Fac Arts & Sci, Dept Math, Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania; [Baleanu, Dumitru] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan | en_US |
| gdc.description.endpage | 17506 | en_US |
| gdc.description.issue | 9 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 17486 | en_US |
| gdc.description.volume | 7 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W4288085597 | |
| gdc.identifier.wos | WOS:000835164600006 | |
| gdc.openalex.fwci | 2.26643874 | |
| gdc.openalex.normalizedpercentile | 0.85 | |
| gdc.opencitations.count | 12 | |
| gdc.plumx.mendeley | 1 | |
| gdc.plumx.scopuscites | 17 | |
| gdc.scopus.citedcount | 17 | |
| gdc.wos.citedcount | 14 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |