Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

On a Backward Problem for Fractional Diffusion Equation With Riemann-Liouville Derivative

No Thumbnail Available

Date

2020

Journal Title

Journal ISSN

Volume Title

Publisher

Wiley

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Journal Issue

Abstract

In the present paper, we study the initial inverse problem (backward problem) for a two-dimensional fractional differential equation with Riemann-Liouville derivative. Our model is considered in the random noise of the given data. We show that our problem is not well-posed in the sense of Hadamard. A truncated method is used to construct an approximate function for the solution (called the regularized solution). Furthermore, the error estimate of the regularized solution in L-2 and H-tau norms is considered and illustrated by numerical example.

Description

Nguyen Huy, Tuan/0000-0002-6962-1898

Keywords

Backward Problem, Fractional Diffusion Equation, Random Noise, Regularized Solution

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Tuan, Nguyen Huy...et al. (2019). "On a backward problem for fractional diffusion equation with Riemann-Liouville derivative", Mathematical Methods in the Applied Sciences, Vol. 43, No. 3, pp. 1292-1312.

WoS Q

Q1

Scopus Q

Q1
OpenCitations Logo
OpenCitations Citation Count
11

Source

Volume

43

Issue

3

Start Page

1292

End Page

1312
PlumX Metrics
Citations

CrossRef : 8

Scopus : 13

Captures

Mendeley Readers : 1

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.9184492

Sustainable Development Goals