On a Backward Problem for Fractional Diffusion Equation With Riemann-Liouville Derivative
| dc.contributor.author | Nguyen Hoang Tuan | |
| dc.contributor.author | Baleanu, Dumitru | |
| dc.contributor.author | Tran Ngoc Thach | |
| dc.contributor.author | Nguyen Huy Tuan | |
| dc.contributor.authorID | 56389 | tr_TR |
| dc.contributor.other | 02.02. Matematik | |
| dc.contributor.other | 02. Fen-Edebiyat Fakültesi | |
| dc.contributor.other | 01. Çankaya Üniversitesi | |
| dc.date.accessioned | 2021-02-16T12:43:32Z | |
| dc.date.accessioned | 2025-09-18T13:26:31Z | |
| dc.date.available | 2021-02-16T12:43:32Z | |
| dc.date.available | 2025-09-18T13:26:31Z | |
| dc.date.issued | 2020 | |
| dc.description | Nguyen Huy, Tuan/0000-0002-6962-1898 | en_US |
| dc.description.abstract | In the present paper, we study the initial inverse problem (backward problem) for a two-dimensional fractional differential equation with Riemann-Liouville derivative. Our model is considered in the random noise of the given data. We show that our problem is not well-posed in the sense of Hadamard. A truncated method is used to construct an approximate function for the solution (called the regularized solution). Furthermore, the error estimate of the regularized solution in L-2 and H-tau norms is considered and illustrated by numerical example. | en_US |
| dc.description.publishedMonth | 2 | |
| dc.description.sponsorship | Vietnam National University Ho Chi Minh City [B2020-44-01] | en_US |
| dc.description.sponsorship | Vietnam National University Ho Chi Minh City, Grant/Award Number: B2020-44-01 | en_US |
| dc.identifier.citation | Tuan, Nguyen Huy...et al. (2019). "On a backward problem for fractional diffusion equation with Riemann-Liouville derivative", Mathematical Methods in the Applied Sciences, Vol. 43, No. 3, pp. 1292-1312. | en_US |
| dc.identifier.doi | 10.1002/mma.5943 | |
| dc.identifier.issn | 0170-4214 | |
| dc.identifier.issn | 1099-1476 | |
| dc.identifier.scopus | 2-s2.0-85075742233 | |
| dc.identifier.uri | https://doi.org/10.1002/mma.5943 | |
| dc.identifier.uri | https://hdl.handle.net/123456789/12637 | |
| dc.language.iso | en | en_US |
| dc.publisher | Wiley | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Backward Problem | en_US |
| dc.subject | Fractional Diffusion Equation | en_US |
| dc.subject | Random Noise | en_US |
| dc.subject | Regularized Solution | en_US |
| dc.title | On a Backward Problem for Fractional Diffusion Equation With Riemann-Liouville Derivative | en_US |
| dc.title | On a backward problem for fractional diffusion equation with Riemann-Liouville derivative | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Nguyen Huy, Tuan/0000-0002-6962-1898 | |
| gdc.author.institutional | Baleanu, Dumitru | |
| gdc.author.scopusid | 17347203900 | |
| gdc.author.scopusid | 58586456800 | |
| gdc.author.scopusid | 7005872966 | |
| gdc.author.scopusid | 57204430456 | |
| gdc.author.wosid | Nguyen, B. An/Gwm-9138-2022 | |
| gdc.author.wosid | Nguyen, Tuan/E-3617-2019 | |
| gdc.author.wosid | Baleanu, Dumitru/B-9936-2012 | |
| gdc.author.wosid | Tran, Thach/E-6127-2019 | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Nguyen Huy Tuan] Duy Tan Univ, Inst Res & Dev, Da Nang 550000, Vietnam; [Nguyen Hoang Tuan] Vietnam Natl Univ HCMC, Sch Med, Ho Chi Minh City, Vietnam; [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, RO-077125 Magurele, Romania; [Tran Ngoc Thach] Ton Duc Thang Univ, Fac Math & Stat, Appl Anal Res Grp, Ho Chi Minh City, Vietnam | en_US |
| gdc.description.endpage | 1312 | en_US |
| gdc.description.issue | 3 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 1292 | en_US |
| gdc.description.volume | 43 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W2992566495 | |
| gdc.identifier.wos | WOS:000499596500001 | |
| gdc.openalex.fwci | 0.9184492 | |
| gdc.openalex.normalizedpercentile | 0.74 | |
| gdc.opencitations.count | 11 | |
| gdc.plumx.crossrefcites | 8 | |
| gdc.plumx.mendeley | 1 | |
| gdc.plumx.scopuscites | 13 | |
| gdc.scopus.citedcount | 12 | |
| gdc.wos.citedcount | 15 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |