Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Generalized Fractional Differential Equations for Past Dynamic

dc.contributor.author Shiri, Babak
dc.contributor.author Baleanu, Dumitru
dc.contributor.authorID 56389 tr_TR
dc.contributor.other 02.02. Matematik
dc.contributor.other 02. Fen-Edebiyat Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2024-03-28T12:45:33Z
dc.date.accessioned 2025-09-18T12:08:40Z
dc.date.available 2024-03-28T12:45:33Z
dc.date.available 2025-09-18T12:08:40Z
dc.date.issued 2022
dc.description.abstract Well-posedness of the terminal value problem for nonlinear systems of generalized fractional differential equations is studied. The generalized fractional operator is formulated with a classical operator and a related weighted space. The terminal value problem is transformed into weakly singular Fredholm and Volterra integral equations with delay. A lower bound for the well-posedness of the corresponding problem is introduced. A collocation method covering all problems with generalized derivatives is introduced and analyzed. Illustrative examples for validation and application of the proposed methods are supported. The effects of various fractional derivatives on the solution, wellposedness, and fitting error are studied. An application for estimating the population of diabetes cases in the past is introduced. en_US
dc.identifier.citation Baleanu, Dumitru; Shiri, B. (2022). "Generalized fractional differential equations for past dynamic", AIMS Mathematics, Vol.7, No.8, pp.14394-14418. en_US
dc.identifier.doi 10.3934/math.2022793
dc.identifier.issn 2473-6988
dc.identifier.scopus 2-s2.0-85131533699
dc.identifier.uri https://doi.org/10.3934/math.2022793
dc.identifier.uri https://hdl.handle.net/123456789/11173
dc.language.iso en en_US
dc.publisher Amer inst Mathematical Sciences-aims en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Terminal Value Problems en_US
dc.subject Generalized Fractional Integral en_US
dc.subject System Of Generalized Fractional Differential Equations en_US
dc.subject Hadamard Fractional Operator en_US
dc.subject Katugampola Fractional Operator en_US
dc.subject Collocation Methods en_US
dc.title Generalized Fractional Differential Equations for Past Dynamic en_US
dc.title Generalized fractional differential equations for past dynamic tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Baleanu, Dumitru
gdc.author.scopusid 7005872966
gdc.author.scopusid 55614612800
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.author.wosid Shiri, Babak/T-7172-2019
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania; [Baleanu, Dumitru] China Med Univ Hosp, Dept Med Res, China Med, Taichung, Taiwan; [Shiri, Babak] Neijiang Normal Univ, Coll Math & Informat Sci, Data Recovery Key Lab Sichuan Prov, Neijiang 641100, Peoples R China en_US
gdc.description.endpage 14418 en_US
gdc.description.issue 8 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 14394 en_US
gdc.description.volume 7 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W4285148274
gdc.identifier.wos WOS:000823103000002
gdc.openalex.fwci 7.67102343
gdc.openalex.normalizedpercentile 0.98
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 33
gdc.plumx.mendeley 2
gdc.plumx.scopuscites 44
gdc.scopus.citedcount 44
gdc.wos.citedcount 43
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files