Entire Solutions of a Class of Algebraic Briot-Bouquet Differential Equations Utilizing Majority Concept
| dc.contributor.author | Baleanu, Dumitru | |
| dc.contributor.author | Ibrahim, Rabha W. | |
| dc.date.accessioned | 2022-04-14T12:06:32Z | |
| dc.date.accessioned | 2025-09-18T13:26:21Z | |
| dc.date.available | 2022-04-14T12:06:32Z | |
| dc.date.available | 2025-09-18T13:26:21Z | |
| dc.date.issued | 2020 | |
| dc.description | Ibrahim, Rabha W./0000-0001-9341-025X | en_US |
| dc.description.abstract | In this effort, the analytic solution of a class of algebraic Briot-Bouquet differential equations (ABBDE) in the open unit disk is investigated by making use of a major theory. The class is presented by the formula alpha(1)phi ' 3(z)+alpha(2)phi'(z)phi(z)+alpha(3)phi '(z)phi(2)(z)+aleph(k)(phi)(z)=0, aleph(k)(phi)(z):=a(k)phi(k)(z)+a(k-1)phi(k-1)(z)+...+a(1) phi(z)+a(0). The conformal analysis (angle-preserving) of the ABBDEs is considered. Analytic outcomes of the ABBDEs are indicated by employing the major method. Some special cases are investigated. | en_US |
| dc.identifier.citation | Ibrahim, Rabha W.; Baleanu, Dumitru (2020). "Entire solutions of a class of algebraic Briot-Bouquet differential equations utilizing majority concept", Advances in Difference Equations, Vol. 2020, No. 1. | en_US |
| dc.identifier.doi | 10.1186/s13662-020-03138-2 | |
| dc.identifier.issn | 1687-1847 | |
| dc.identifier.scopus | 2-s2.0-85096986052 | |
| dc.identifier.uri | https://doi.org/10.1186/s13662-020-03138-2 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/12572 | |
| dc.language.iso | en | en_US |
| dc.publisher | Springer | en_US |
| dc.relation.ispartof | Advances in Difference Equations | |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Analytic Function | en_US |
| dc.subject | Subordination | en_US |
| dc.subject | Univalent Function | en_US |
| dc.subject | Open Unit Disk | en_US |
| dc.subject | Algebraic Differential Equations | en_US |
| dc.subject | Majorization Method | en_US |
| dc.title | Entire Solutions of a Class of Algebraic Briot-Bouquet Differential Equations Utilizing Majority Concept | en_US |
| dc.title | Entire solutions of a class of algebraic Briot-Bouquet differential equations utilizing majority concept | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Ibrahim, Rabha W./0000-0001-9341-025X | |
| gdc.author.scopusid | 16319225300 | |
| gdc.author.scopusid | 7005872966 | |
| gdc.author.wosid | Baleanu, Dumitru/B-9936-2012 | |
| gdc.author.wosid | Ibrahim, Rabha W./D-3312-2017 | |
| gdc.author.yokid | 56389 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Ibrahim, Rabha W.] Ton Duc Thang Univ, Informetr Res Grp, Ho Chi Minh City, Vietnam; [Ibrahim, Rabha W.] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam; [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, R-76900 Magurele, Romania; [Baleanu, Dumitru] China Med Univ, Dept Med Res, Taichung 40402, Taiwan | en_US |
| gdc.description.issue | 1 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.volume | 2020 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W3109984193 | |
| gdc.identifier.wos | WOS:000597318800005 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 0.0 | |
| gdc.oaire.influence | 2.4895952E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | Analytic function | |
| gdc.oaire.keywords | Open unit disk | |
| gdc.oaire.keywords | Algebraic differential equations | |
| gdc.oaire.keywords | QA1-939 | |
| gdc.oaire.keywords | Subordination | |
| gdc.oaire.keywords | Univalent function | |
| gdc.oaire.keywords | Majorization method | |
| gdc.oaire.keywords | Mathematics | |
| gdc.oaire.keywords | General theory of univalent and multivalent functions of one complex variable | |
| gdc.oaire.keywords | subordination | |
| gdc.oaire.keywords | univalent function | |
| gdc.oaire.keywords | analytic function | |
| gdc.oaire.keywords | Special classes of univalent and multivalent functions of one complex variable (starlike, convex, bounded rotation, etc.) | |
| gdc.oaire.keywords | majorization method | |
| gdc.oaire.keywords | open unit disk | |
| gdc.oaire.keywords | algebraic differential equations | |
| gdc.oaire.popularity | 1.3503004E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0202 electrical engineering, electronic engineering, information engineering | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.oaire.sciencefields | 0101 mathematics | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 0.0 | |
| gdc.openalex.normalizedpercentile | 0.15 | |
| gdc.opencitations.count | 0 | |
| gdc.plumx.scopuscites | 2 | |
| gdc.publishedmonth | 12 | |
| gdc.scopus.citedcount | 2 | |
| gdc.virtual.author | Baleanu, Dumitru | |
| gdc.wos.citedcount | 1 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |
