Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Detection of Rheumatoid Arthritis From Hand Radiographs Using A Convolutional Neural Network

dc.authorscopusid 6507776586
dc.authorscopusid 55900695500
dc.authorscopusid 56875440000
dc.authorwosid Maras, Hakan/G-1236-2017
dc.authorwosid Erbay, Hasan/F-1093-2016
dc.contributor.author Ureten, Kemal
dc.contributor.author Erbay, Hasan
dc.contributor.author Maras, Hadi Hakan
dc.contributor.other Bilgisayar Mühendisliği
dc.date.accessioned 2020-05-20T19:34:07Z
dc.date.available 2020-05-20T19:34:07Z
dc.date.issued 2020
dc.department Çankaya University en_US
dc.department-temp [Ureten, Kemal] Kirikkale Univ, Fac Med, Dept Rheumatol, TR-71450 Kirikkale, Turkey; [Ureten, Kemal] Cankaya Univ, Dept Comp Engn, Ankara, Turkey; [Erbay, Hasan] Kirikkale Univ, Fac Engn, Dept Comp Engn, Kirikkale, Turkey; [Maras, Hadi Hakan] Cankaya Univ, Fac Engn, Dept Comp Engn, Ankara, Turkey en_US
dc.description.abstract Introduction Plain hand radiographs are the first-line and most commonly used imaging methods for diagnosis or differential diagnosis of rheumatoid arthritis (RA) and for monitoring disease activity. In this study, we used plain hand radiographs and tried to develop an automated diagnostic method using the convolutional neural networks to help physicians while diagnosing rheumatoid arthritis. Methods A convolutional neural network (CNN) is a deep learning method based on a multilayer neural network structure. The network was trained on a dataset containing 135 radiographs of the right hands, of which 61 were normal and 74 RA, and tested it on 45 radiographs, of which 20 were normal and 25 RA. Results The accuracy of the network was 73.33% and the error rate 0.0167. The sensitivity of the network was 0.6818; the specificity was 0.7826 and the precision 0.7500. Conclusion Using only pixel information on hand radiographs, a multi-layer CNN architecture with online data augmentation was designed. The performance metrics such as accuracy, error rate, sensitivity, specificity, and precision state shows that the network is promising in diagnosing rheumatoid arthritis. en_US
dc.description.publishedMonth 4
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Üreten, K.; Erbay, H.; Maraş, H.H., "Detection of Rheumatoid Arthritis From Hand Radiographs Using A Convolutional Neural Network", Clinical Rheumatology, Vol. 39, No. 4, pp. 969-974, (2020). en_US
dc.identifier.doi 10.1007/s10067-019-04487-4
dc.identifier.endpage 974 en_US
dc.identifier.issn 0770-3198
dc.identifier.issn 1434-9949
dc.identifier.issue 4 en_US
dc.identifier.pmid 30850962
dc.identifier.scopus 2-s2.0-85062710388
dc.identifier.scopusquality Q1
dc.identifier.startpage 969 en_US
dc.identifier.uri https://doi.org/10.1007/s10067-019-04487-4
dc.identifier.volume 39 en_US
dc.identifier.wos WOS:000524870500001
dc.identifier.wosquality Q3
dc.institutionauthor Maraş, Hadi Hakan
dc.language.iso en en_US
dc.publisher Springer London Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 64
dc.subject Convolutional Neural Network en_US
dc.subject Deep Learning en_US
dc.subject Plain Hand Radiographs en_US
dc.subject Rheumatoid Arthritis en_US
dc.title Detection of Rheumatoid Arthritis From Hand Radiographs Using A Convolutional Neural Network tr_TR
dc.title Detection of Rheumatoid Arthritis From Hand Radiographs Using a Convolutional Neural Network en_US
dc.type Article en_US
dc.wos.citedbyCount 57
dspace.entity.type Publication
relation.isAuthorOfPublication 8c98bd6c-e698-4f0e-8c8b-ab2fb09ee9ab
relation.isAuthorOfPublication.latestForDiscovery 8c98bd6c-e698-4f0e-8c8b-ab2fb09ee9ab
relation.isOrgUnitOfPublication 12489df3-847d-4936-8339-f3d38607992f
relation.isOrgUnitOfPublication.latestForDiscovery 12489df3-847d-4936-8339-f3d38607992f

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: