Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Inference of Autoregressive Model With Stochastic Exogenous Variable Under Short-Tailed Symmetric Distributions

dc.contributor.author Bayrak, Ozlem Tuker
dc.contributor.author Akkaya, Aysen Dener
dc.contributor.authorID 56416 tr_TR
dc.contributor.other 09.01. Ortak Dersler Bölümü
dc.contributor.other 09. Rektörlük
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2020-03-17T13:30:15Z
dc.date.accessioned 2025-09-18T12:49:30Z
dc.date.available 2020-03-17T13:30:15Z
dc.date.available 2025-09-18T12:49:30Z
dc.date.issued 2018
dc.description Ozlem/0000-0003-0821-150X en_US
dc.description.abstract In classical autoregressive models, it is assumed that the disturbances are normally distributed and the exogenous variable is non-stochastic. However, in practice, short-tailed symmetric disturbances occur frequently and exogenous variable is actually stochastic. In this paper, estimation of the parameters in autoregressive models with stochastic exogenous variable and non-normal disturbances both having short-tailed symmetric distribution is considered. This is the first study in this area as known to the authors. In this situation, maximum likelihood estimation technique is problematic and requires numerical solution which may have convergence problems and can cause bias. Besides, statistical properties of the estimators can not be obtained due to non-explicit functions. It is also known that least squares estimation technique yields neither efficient nor robust estimators. Therefore, modified maximum likelihood estimation technique is utilized in this study. It is shown that the estimators are highly efficient, robust to plausible alternatives having different forms of symmetric short-tailedness in the sample and explicit functions of data overcoming the necessity of numerical solution. A real life application is also given. en_US
dc.description.publishedMonth 12
dc.identifier.citation Bayrak, Ozlem Tuker; Akkaya, Aysen Dener, "Inference of Autoregressive Model with Stochastic Exogenous Variable Under Short-Tailed Symmetric Distributions", Iranian Journal of Science and Technology Transaction a-Science, Vol. 42, No. A4, pp. 2105-2116, (2018). en_US
dc.identifier.doi 10.1007/s40995-017-0448-x
dc.identifier.issn 1028-6276
dc.identifier.issn 2364-1819
dc.identifier.scopus 2-s2.0-85055536641
dc.identifier.uri https://doi.org/10.1007/s40995-017-0448-x
dc.identifier.uri https://hdl.handle.net/123456789/12364
dc.language.iso en en_US
dc.publisher Springer international Publishing Ag en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Autoregression en_US
dc.subject Modified Maximum Likelihood en_US
dc.subject Non-Normality en_US
dc.subject Robustness en_US
dc.title Inference of Autoregressive Model With Stochastic Exogenous Variable Under Short-Tailed Symmetric Distributions en_US
dc.title Inference of Autoregressive Model with Stochastic Exogenous Variable Under Short-Tailed Symmetric Distributions tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id , Ozlem/0000-0003-0821-150X
gdc.author.institutional Bayrak, Özlem
gdc.author.scopusid 34970726800
gdc.author.scopusid 6603740998
gdc.author.wosid Turker Bayrak, Ozlem/Abc-1373-2020
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Bayrak, Ozlem Tuker] Cankaya Univ, Dept Intercurricular Courses, Eskisehir Yolu 29 Km,Mimar Sinan Caddesi 4, TR-06790 Ankara, Turkey; [Akkaya, Aysen Dener] Middle East Tech Univ, Dept Stat, Dumlupinar Bulvari 1, TR-06800 Ankara, Turkey en_US
gdc.description.endpage 2116 en_US
gdc.description.issue A4 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 2105 en_US
gdc.description.volume 42 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q3
gdc.identifier.openalex W2774551734
gdc.identifier.wos WOS:000456482200044
gdc.openalex.fwci 0.31563273
gdc.openalex.normalizedpercentile 0.62
gdc.opencitations.count 1
gdc.plumx.scopuscites 1
gdc.scopus.citedcount 1
gdc.wos.citedcount 0
relation.isAuthorOfPublication 2588a5a9-5f4a-4469-8a03-b06b1692d468
relation.isAuthorOfPublication.latestForDiscovery 2588a5a9-5f4a-4469-8a03-b06b1692d468
relation.isOrgUnitOfPublication c26f9572-660d-46b5-a627-8e3068321c89
relation.isOrgUnitOfPublication 79403971-5ab2-4efd-ac9e-f03745af3705
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery c26f9572-660d-46b5-a627-8e3068321c89

Files