Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Thermodynamics of small platinum clusters

No Thumbnail Available

Date

2006

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Science

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Events

Abstract

Using the Voter and Chen version of an embedded atom model, derived by fitting simultaneously to experimental data of both the diatomic molecule and bulk platinum, we have studied the melting behavior of free, small platinum clusters in the size range of N = 15-19 in the molecular dynamics simulation technique. We present an atom-resolved analysis method that includes physical quantities such as the root-mean-square bond-length fluctuation and coordination number for individual atoms as functions of temperature. The results show that as the Pt-15-Pt-18 clusters exhibit multistage melting, melting in Pt-19 cluster takes place in a single but interesting stage. None of these melting stages occurs at a specific temperature, rather, melting processes take place over a finite temperature range. This range is larger for less symmetric clusters. An ensemble of clusters in the melting region is a mixture of different isomeric forms of the clusters. The multistage melting and the occurrence of a single melting stage over a temperature range are two different phenomena.

Description

Keywords

Pt Clusters, Melting, Molecular Dynamics, Embedded Atom Method, Icosahedron

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Sebetci, A., Güvenç, Z.B., Kökten, H. (2006). Thermodynamics of small platinum clusters. Computational Materials Science, 35(3), 192-197. http://dx.doi.org/10.1016/j.commatsci.2004.08.016

WoS Q

Scopus Q

Source

Computational Materials Science

Volume

35

Issue

3

Start Page

192

End Page

197