Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Perlin random erasing for data augmentation

dc.contributor.authorSaran, Murat
dc.contributor.authorNar, Fatih
dc.contributor.authorSaran, Ayse Nurdan
dc.contributor.authorID17753tr_TR
dc.contributor.authorID20868tr_TR
dc.date.accessioned2022-12-02T11:36:03Z
dc.date.available2022-12-02T11:36:03Z
dc.date.issued2021
dc.departmentÇankaya Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.description.abstractIn the last decade, Deep Learning is applied in a wide range of problems with tremendous success. Large data, increased computational resources, and theoretical improvements are main reasons for this success. As the dataset grows, the realworld is better represented, allows developing a model that can generalize. However, creating a labeled dataset is expensive, timeconsuming, or sometimes even challenging. Therefore, researchers proposed data augmentation methods to increase dataset size by creating variations of the existing data. This study proposes an extension to Random Erasing data augmentation method by introducing smoothness. The proposed method provides better performance compared to Random Erasing data augmentation method, which is shown using a transfer learning scenario on the UC Merced Land-use image dataset.en_US
dc.description.publishedMonth6
dc.identifier.citationSaran, Murat; Nar, Fatih; Saran, Ayse Nurdan (2021). "Perlin random erasing for data augmentation", SIU 2021 - 29th IEEE Conference on Signal Processing and Communications Applications, Proceedings, 29th IEEE Conference on Signal Processing and Communications Applications, SIU 2021Virtual, Istanbul9 June 2021through 11 June 2021.en_US
dc.identifier.doi10.1109/SIU53274.2021.9477804
dc.identifier.isbn9781665436496
dc.identifier.urihttp://hdl.handle.net/20.500.12416/5918
dc.language.isoenen_US
dc.relation.ispartofSIU 2021 - 29th IEEE Conference on Signal Processing and Communications Applications, Proceedingsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectData Augmentationen_US
dc.subjectDeep Learningen_US
dc.subjectRandom Erasingen_US
dc.titlePerlin random erasing for data augmentationtr_TR
dc.titlePerlin random erasing for data augmentationen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: