Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Vessel Segmentation in Mri Using a Variational Image Subtraction Approach

dc.contributor.author Saran, Ayşe Nurdan
dc.contributor.author Nar, Fatih
dc.contributor.author Saran, Murat
dc.contributor.authorID 20868 tr_TR
dc.contributor.authorID 17753 tr_TR
dc.contributor.other 02.02. Matematik
dc.contributor.other 06.01. Bilgisayar Mühendisliği
dc.contributor.other 02. Fen-Edebiyat Fakültesi
dc.contributor.other 06. Mühendislik Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2020-05-12T20:19:20Z
dc.date.accessioned 2025-09-18T12:05:20Z
dc.date.available 2020-05-12T20:19:20Z
dc.date.available 2025-09-18T12:05:20Z
dc.date.issued 2014
dc.description.abstract Vessel segmentation is important for many clinical applications, such as the diagnosis of vascular diseases, the planning of surgery, or the monitoring of the progress of disease. Although various approaches have been proposed to segment vessel structures from 3-dimensional medical images, to the best of our knowledge, there has been no known technique that uses magnetic resonance imaging (MRI) as prior information within the vessel segmentation of magnetic resonance angiography (MRA) or magnetic resonance venography (MRV) images. In this study, we propose a novel method that uses MRI images as an atlas, assuming that the patient has an MRI image in addition to MRA/MRV images. The proposed approach intends to increase vessel segmentation accuracy by using the available MRI image as prior information. We use a rigid mutual information registration of the MRA/MRV to the MRI, which provides subvoxel accurate multimodal image registration. On the other hand, vessel segmentation methods tend to mostly suffer from imaging artifacts, such as Rician noise, radio frequency (RF) inhomogeneity, or partial volume effects that are generated by imaging devices. Therefore, this proposed method aims to extract all of the vascular structures from MRA/MRI or MRV/MRI pairs at the same time, while minimizing the combined effects of noise and RF inhomogeneity. Our method is validated both quantitatively and visually using BrainWeb phantom images and clinical MRI, MRA, and MRV images. Comparison and observer studies are also realized using the BrainWeb database and clinical images. The computation time is markedly reduced by developing a parallel implementation using the Nvidia compute unified device architecture and OpenMP frameworks in order to allow the use of the method in clinical settings. en_US
dc.identifier.citation Saran, Ayşe Nurdan; Saran, Murat; Nar, Fatih, "Vessel segmentation in MRI using a variational image subtraction approach", Turkish Journal of Electrical Engineering and Computer Sciences, Vol. 22, No. 2, pp. 499-516, (2014). en_US
dc.identifier.issn 1300-0632
dc.identifier.scopus 2-s2.0-84894217227
dc.identifier.uri https://search.trdizin.gov.tr/en/yayin/detay/213947/vessel-segmentation-in-mri-using-a-variational-image-subtraction-approach
dc.identifier.uri https://hdl.handle.net/123456789/10563
dc.language.iso en en_US
dc.relation.ispartof Turkish Journal of Electrical Engineering and Computer Sciences en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Mühendislik en_US
dc.subject Biyotıp en_US
dc.subject Bilgisayar Bilimleri en_US
dc.subject Yazılım Mühendisliği en_US
dc.subject Görüntüleme Bilimi Ve Fotoğraf Teknolojisi en_US
dc.title Vessel Segmentation in Mri Using a Variational Image Subtraction Approach en_US
dc.title Vessel segmentation in MRI using a variational image subtraction approach tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Saran, Murat/0000-0002-8652-3392
gdc.author.id Nar, Fatih/0000-0002-3003-8136
gdc.author.institutional Saran, Ayşe Nurdan
gdc.author.institutional Nar, Fatih
gdc.author.institutional Saran, Murat
gdc.author.scopusid 25651951700
gdc.author.scopusid 9269153000
gdc.author.scopusid 24722292900
gdc.author.wosid Saran, Murat/U-5382-2018
gdc.author.wosid Saran, Nurdan/Izq-0124-2023
gdc.author.wosid Nar, Fatih/B-8130-2013
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp Çankaya Üniversitesi,Orta Doğu Teknik Üniversitesi,Çankaya Üniversitesi en_US
gdc.description.endpage 516 en_US
gdc.description.issue 2 en_US
gdc.description.publicationcategory Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 499 en_US
gdc.description.volume 22 en_US
gdc.description.wosquality Q4
gdc.identifier.trdizinid 213947
gdc.identifier.wos WOS:000330573900020
gdc.scopus.citedcount 5
gdc.wos.citedcount 5
relation.isAuthorOfPublication 5de9997f-6ac0-489d-9c97-5e674bd1b9c7
relation.isAuthorOfPublication 4cf48a50-3268-44f4-9f6d-df441e0e2cfe
relation.isAuthorOfPublication f92fb8be-a1b3-4888-abaf-40ad03004780
relation.isAuthorOfPublication.latestForDiscovery 5de9997f-6ac0-489d-9c97-5e674bd1b9c7
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 12489df3-847d-4936-8339-f3d38607992f
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 43797d4e-4177-4b74-bd9b-38623b8aeefa
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files