Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

A New Relational Learning System Using Novel Rule Selection Strategies

dc.contributor.authorUludağ, Mahmut
dc.contributor.authorTolun, Mehmet R.
dc.date.accessioned2016-04-05T10:53:58Z
dc.date.available2016-04-05T10:53:58Z
dc.date.issued2006
dc.departmentÇankaya Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.description.abstractThis paper describes a new rule induction system, rila, which can extract frequent patterns from multiple connected relations. The system supports two different rule selection strategies, namely the select early and select late strategies. Pruning heuristics are used to control the number of hypotheses generated during the learning process. Experimental results are provided on the mutagenesis and the segmentation data sets. The present rule induction algorithm is also compared to the similar relational learning algorithms. Results show that the algorithm is comparable to similar algorithmsen_US
dc.description.publishedMonth12
dc.identifier.citationUludağ, M., Tolun, M.R. (2006). A new relational learning system using novel rule selection strategies. Knowledge-Based Systems, 19(8), 765-771. http://dx.doi.org/10.1016/j.knosys.2006.05.004en_US
dc.identifier.doi10.1016/j.knosys.2006.05.004
dc.identifier.endpage771en_US
dc.identifier.issn0950-7051
dc.identifier.issue8en_US
dc.identifier.startpage765en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12416/832
dc.identifier.volume19en_US
dc.language.isoengen_US
dc.publisherElsevier Scienceen_US
dc.relation.ispartofKnowledge-Based Systemsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectRelational Rule Inductionen_US
dc.subjectRule Selection Strategiesen_US
dc.subjectPruningen_US
dc.titleA New Relational Learning System Using Novel Rule Selection Strategiesen_US
dc.typearticleen_US
dspace.entity.typePublication

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: