Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Jacobian Matrix Algorithm for Lyapunov Exponents of the Discrete Fractional Maps

dc.contributor.author Baleanu, Dumitru
dc.contributor.author Wu, Guo-Cheng
dc.contributor.other 02.02. Matematik
dc.contributor.other 02. Fen-Edebiyat Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2017-04-18T10:47:48Z
dc.date.accessioned 2025-09-18T12:08:46Z
dc.date.available 2017-04-18T10:47:48Z
dc.date.available 2025-09-18T12:08:46Z
dc.date.issued 2015
dc.description Wu, Guo-Cheng/0000-0002-1946-6770 en_US
dc.description.abstract The Jacobian matrix algorithm is often used to calculate the Lyapunov exponents of the chaotic systems. This study extends the algorithm to discrete fractional cases. The tangent maps with memory effect are presented. The Lyapunov exponents of one and two dimensional fractional logistic maps are calculated. The positive ones are used to distinguish the chaotic areas of the maps. (C) 2014 Elsevier B.V. All rights reserved. en_US
dc.description.publishedMonth 5
dc.description.sponsorship National Natural Science Foundation of China [11301257]; Seed Funds for Major Science and Technology Innovation Projects of Sichuan Provincial Education Department [14CZ0026]; Innovative Team Program of the Neijiang Normal University [13TD01] en_US
dc.description.sponsorship This work was financially supported by the National Natural Science Foundation of China (Grant No. 11301257), the Seed Funds for Major Science and Technology Innovation Projects of Sichuan Provincial Education Department (Grant No. 14CZ0026) and the Innovative Team Program of the Neijiang Normal University (Grant No. 13TD01). The first author feels grateful to Prof. Yu Xue who gave sincere help when preparing the paper in the City University of Hongkong this summer. We also appreciate all the referees' kind suggestions. en_US
dc.identifier.citation Wu, G.C., Baleanu, D. (2015). Jacobian matrix algorithm for Lyapunov exponents of the discrete fractional maps. Communications In Nonlinear Science And Numerical Simulation, 22(1-3), 95-100. http://dx.doi.org/10.1016/j.cnsns.2014.06.042 en_US
dc.identifier.doi 10.1016/j.cnsns.2014.06.042
dc.identifier.issn 1007-5704
dc.identifier.issn 1878-7274
dc.identifier.scopus 2-s2.0-85027943162
dc.identifier.uri https://doi.org/10.1016/j.cnsns.2014.06.042
dc.identifier.uri https://hdl.handle.net/123456789/11217
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Discrete Fractional Calculus en_US
dc.subject Lyapunov Exponent en_US
dc.subject Symbolic Computation en_US
dc.title Jacobian Matrix Algorithm for Lyapunov Exponents of the Discrete Fractional Maps en_US
dc.title Jacobian matrix algorithm for Lyapunov exponents of the discrete fractional maps tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Wu, Guo-Cheng/0000-0002-1946-6770
gdc.author.institutional Baleanu, Dumitru
gdc.author.scopusid 23390775700
gdc.author.scopusid 7005872966
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.author.wosid Wu, Guo-Cheng/T-9088-2017
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Wu, Guo-Cheng] Neijiang Normal Univ, Coll Math & Informat Sci, Inst Appl Nonlinear Sci, Neijiang 641100, Peoples R China; [Baleanu, Dumitru] King Abdulaziz Univ, Fac Engn, Dept Chem & Mat Engn, Jeddah 21589, Saudi Arabia; [Baleanu, Dumitru] Inst Space Sci, Bucharest, Romania; [Baleanu, Dumitru] Cankaya Univ, Fac Arts & Sci, Dept Math & Comp Sci, TR-06530 Ankara, Turkey en_US
gdc.description.endpage 100 en_US
gdc.description.issue 1-3 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 95 en_US
gdc.description.volume 22 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W2063889362
gdc.identifier.wos WOS:000345700500071
gdc.openalex.fwci 4.91121539
gdc.openalex.normalizedpercentile 0.96
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 132
gdc.plumx.crossrefcites 63
gdc.plumx.mendeley 19
gdc.plumx.scopuscites 169
gdc.scopus.citedcount 167
gdc.wos.citedcount 154
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files