Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

A Hybrid Analytical Technique for Solving Nonlinear Fractional Order Pdes of Power Law Kernel: Application To Kdv and Fornberg-Witham Equations

dc.contributor.author Ullah, Aman
dc.contributor.author Akgul, Ali
dc.contributor.author Jarad, Fahd
dc.contributor.author Ahmad, Shabir
dc.contributor.authorID 234808 tr_TR
dc.contributor.other 02.02. Matematik
dc.contributor.other 02. Fen-Edebiyat Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2024-02-09T11:42:24Z
dc.date.accessioned 2025-09-18T12:05:48Z
dc.date.available 2024-02-09T11:42:24Z
dc.date.available 2025-09-18T12:05:48Z
dc.date.issued 2022
dc.description Ullah, Aman/0000-0003-4021-3599; Ahmad, Shabir/0000-0002-5610-6248 en_US
dc.description.abstract It is important to deal with the exact solution of nonlinear PDEs of non-integer orders. Integral transforms play a vital role in solving differential equations of integer and fractional orders. 'o obtain analytical solutions to integer and fractional-order DEs, a few transforms, such as Laplace transforms, Sumudu transforms, and Elzaki transforms, have been widely used by researchers. We propose the Yang transform homotopy perturbation (YTHP) technique in this paper. We present the relation of Yang transform (YT) with the Laplace transform. We find a formula for the YT of fractional derivative in Caputo sense. We deduce a procedure for computing the solution of fractional-order nonlinear PDEs involving the power-law kernel. We show the convergence and error estimate of the suggested method. We give some examples to illustrate the novel method. We provide a comparison between the approximate solution and exact solution through tables and graphs. en_US
dc.identifier.citation Ahmad, Shabir;...et.al. (2022). "A hybrid analytical technique for solving nonlinear fractional order PDEs of power law kernel: Application to KdV and Fornberg-Witham equations", AIMS Mathematics, Vol.7, No.5, pp.9389-9404. en_US
dc.identifier.doi 10.3934/math.2022521
dc.identifier.issn 2473-6988
dc.identifier.scopus 2-s2.0-85127068844
dc.identifier.uri https://doi.org/10.3934/math.2022521
dc.identifier.uri https://hdl.handle.net/123456789/10733
dc.language.iso en en_US
dc.publisher Amer inst Mathematical Sciences-aims en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Yang Transform en_US
dc.subject Homotopy Perturbation Method en_US
dc.subject Power Law Kernel en_US
dc.title A Hybrid Analytical Technique for Solving Nonlinear Fractional Order Pdes of Power Law Kernel: Application To Kdv and Fornberg-Witham Equations en_US
dc.title A hybrid analytical technique for solving nonlinear fractional order PDEs of power law kernel: Application to KdV and Fornberg-Witham equations tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Ullah, Aman/0000-0003-4021-3599
gdc.author.id Ahmad, Shabir/0000-0002-5610-6248
gdc.author.institutional Jarad, Fahd
gdc.author.scopusid 57223020766
gdc.author.scopusid 57211122805
gdc.author.scopusid 58486733300
gdc.author.scopusid 15622742900
gdc.author.wosid Jarad, Fahd/T-8333-2018
gdc.author.wosid Akgül, Ali/F-3909-2019
gdc.author.wosid Ullah, Aman/Aaj-6441-2021
gdc.author.wosid Ahmad, Shabir/Aaj-8499-2021
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Ahmad, Shabir; Ullah, Aman] Univ Malakand, Dept Math, Dir Lower, Khyber Pakhtunk, Pakistan; [Akgul, Ali] Siirt Univ, Art & Sci Fac, Dept Math, TR-56100 Siirt, Turkey; [Jarad, Fahd] Cankaya Univ, Dept Math, TR-06790 Ankara, Turkey; [Jarad, Fahd] King Abdulaziz Univ, Jeddah, Saudi Arabia; [Jarad, Fahd] China Med Univ, Dept Med Res, Taichung 40402, Taiwan en_US
gdc.description.endpage 9404 en_US
gdc.description.issue 5 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 9389 en_US
gdc.description.volume 7 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W4225336165
gdc.identifier.wos WOS:000770060600004
gdc.openalex.fwci 4.53287748
gdc.openalex.normalizedpercentile 0.94
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 21
gdc.plumx.mendeley 3
gdc.plumx.scopuscites 25
gdc.scopus.citedcount 25
gdc.wos.citedcount 21
relation.isAuthorOfPublication c818455d-5734-4abd-8d29-9383dae37406
relation.isAuthorOfPublication.latestForDiscovery c818455d-5734-4abd-8d29-9383dae37406
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files