Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Application of BiLSTM-CRF model with different embeddings for product name extraction in unstructured Turkish text

dc.authorid Arslan, Serdar/0000-0003-3115-0741
dc.authorscopusid 57767747500
dc.authorwosid Arslan, Serdar/Aad-7744-2020
dc.contributor.author Arslan, Serdar
dc.contributor.author Arslan, Serdar
dc.contributor.authorID 325411 tr_TR
dc.contributor.other Bilgisayar Mühendisliği
dc.date.accessioned 2024-05-28T13:28:20Z
dc.date.available 2024-05-28T13:28:20Z
dc.date.issued 2024
dc.department Çankaya University en_US
dc.department-temp [Arslan, Serdar] Cankaya Univ, Comp Engn Dept, TR-06790 Etimesgut, Ankara, Turkiye en_US
dc.description Arslan, Serdar/0000-0003-3115-0741 en_US
dc.description.abstract Named entity recognition (NER) plays a pivotal role in Natural Language Processing by identifying and classifying entities within textual data. While NER methodologies have seen significant advancements, driven by pretrained word embeddings and deep neural networks, the majority of these studies have focused on text with well-defined grammar and structure. A significant research gap exists concerning NER in informal or unstructured text, where traditional grammar rules and sentence structure are absent. This research addresses this crucial gap by focusing on the detection of product names within unstructured Turkish text. To accomplish this, we propose a deep learning-based NER model which combines a Bidirectional Long Short-Term Memory (BiLSTM) architecture with a Conditional Random Field (CRF) layer, further enhanced by FastText embeddings. To comprehensively evaluate and compare our model's performance, we explore different embedding approaches, including Word2Vec and Glove, in conjunction with the Bidirectional Long Short-Term Memory and Conditional Random Field (BiLSTM-CRF) model. Furthermore, we conduct comparisons against BERT to assess the efficacy of our approach. Our experimentation utilizes a Turkish e-commerce dataset gathered from the internet, where traditional grammatical and structural rules may not apply. The BiLSTM-CRF model with FastText embeddings achieved an F1 score value of 57.40%, a precision value of 55.78%, and a recall value of 59.12%. These results indicate promising performance in outperforming other baseline techniques. This research contributes to the field of NER by addressing the unique challenges posed by unstructured Turkish text and opens avenues for improved entity recognition in informal language settings, with potential applications across various domains. en_US
dc.description.publishedMonth 5
dc.description.sponsorship Cankaya University en_US
dc.description.sponsorship No Statement Available en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Arslan, Serdar (2024). "Application of BiLSTM-CRF model with different embeddings for product name extraction in unstructured Turkish text", Neural Computing and Applications, Vol. 36, No. 15, pp. 8371-8382. en_US
dc.identifier.doi 10.1007/s00521-024-09532-1
dc.identifier.issn 0941-0643
dc.identifier.issn 1433-3058
dc.identifier.scopus 2-s2.0-85185472823
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1007/s00521-024-09532-1
dc.identifier.wos WOS:001166470700003
dc.identifier.wosquality Q2
dc.institutionauthor Arslan, Serdar
dc.language.iso en en_US
dc.publisher Springer London Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 8
dc.subject Bert en_US
dc.subject Bilstm-Crf en_US
dc.subject Deep Learning en_US
dc.subject Fasttext en_US
dc.subject Named Entity Recognition en_US
dc.title Application of BiLSTM-CRF model with different embeddings for product name extraction in unstructured Turkish text tr_TR
dc.title Application of Bilstm-Crf Model With Different Embeddings for Product Name Extraction in Unstructured Turkish Text en_US
dc.type Article en_US
dc.wos.citedbyCount 8
dspace.entity.type Publication
relation.isAuthorOfPublication ee02ccda-1b5e-4bba-b8b3-ece13ce2ec47
relation.isAuthorOfPublication.latestForDiscovery ee02ccda-1b5e-4bba-b8b3-ece13ce2ec47
relation.isOrgUnitOfPublication 12489df3-847d-4936-8339-f3d38607992f
relation.isOrgUnitOfPublication.latestForDiscovery 12489df3-847d-4936-8339-f3d38607992f

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Article.pdf
Size:
957.66 KB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: