Efficiency of Convolutional Neural Networks (Cnn) Based Image Classification for Monitoring Construction Related Activities: a Case Study on Aggregate Mining for Concrete Production
No Thumbnail Available
Date
2022
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
Monitoring construction activities is an important task for efficiency in construction site opera-tions thus the topic received a fair amount of attention in the literature. Optimizing construction site operations by monitoring and detecting various tasks is dependent on the size of the con-struction field, which determines the tools that can be used for the job. A monitoring task can be performed with high efficiency through image classification algorithms by training the algorithms to detect construction machinery. If the area of monitoring is larger, such as the task of detecting construction related operations in a large infrastructural construction, using drone images might become inefficient. We aimed to take a first step towards a cost-efficient monitoring system specifically for construction activities that cover large territories. Consequently, satellite image classification has been performed for construction machinery detection in this study. We utilized different versions of well-established convolutional neural network architectures as backbone for the transfer learning method and their performances are evaluated. Finally, the best performing models are determined as DenseNet161 and ResNet101 with 0.919 and 0.903 test accuracies, respectively. DenseNet161 model was discussed in terms of its accuracy and efficiency in a case study to detect illegal aggregate mining activity through the basin of Thamirabarani River.
Description
Selcuk, Seda/0000-0002-2046-3841
ORCID
Keywords
Computer Vision, Sustainability, Convolutional Neural Networks, Concrete Production, Aggregate Mining, Remote Sensing
Turkish CoHE Thesis Center URL
Fields of Science
Citation
WoS Q
Q1
Scopus Q
Q1

OpenCitations Citation Count
6
Source
Volume
17
Issue
Start Page
End Page
PlumX Metrics
Citations
CrossRef : 5
Scopus : 28
Captures
Mendeley Readers : 64
Google Scholar™

OpenAlex FWCI
3.58582916
Sustainable Development Goals
3
GOOD HEALTH AND WELL-BEING

4
QUALITY EDUCATION

7
AFFORDABLE AND CLEAN ENERGY

9
INDUSTRY, INNOVATION AND INFRASTRUCTURE

11
SUSTAINABLE CITIES AND COMMUNITIES
