Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

A Computationally Efficient Method for A Class of Fractional Variational and Optimal Control Problems Using Fractional Gegenbauer Functions

dc.contributor.author El-Kalaawy, A. A.
dc.contributor.author Doha, E. H.
dc.contributor.author Ezz-Eldien, S. S.
dc.contributor.author Abdelkawy, M. A.
dc.contributor.author Hafez, R. M.
dc.contributor.author Amin, A. Z. M.
dc.contributor.author Zaky, M. A.
dc.date.accessioned 2025-05-13T13:28:47Z
dc.date.available 2025-05-13T13:28:47Z
dc.date.issued 2018
dc.description Hafez, Ramy/0000-0001-9533-3171; Z .Amin, Ahmed/0000-0003-4044-3335; Zaky, Mahmoud/0000-0002-3376-7238; Abdelkawy, Mohamed/0000-0002-9043-9644 en_US
dc.description.abstract This paper is devoted to investigate, from the numerical point of view, fractional-order Gegenbauer functions to solve fractional variational problems and fractional optimal control problems. We first introduce an orthonormal system of fractional-order Gegenbauer functions. Then, a formulation for the fractional-order Gegenbauer operational matrix of fractional integration is constructed. An error upper bound for the operational matrix of the fractional integration is also given. The properties of the fractional-order Gegenbauer functions are utilized to reduce the given optimization problems to systems of algebraic equations. Some numerical examples are included to demonstrate the efficiency and the accuracy of the proposed approach. en_US
dc.identifier.issn 1221-1451
dc.identifier.issn 1841-8759
dc.identifier.scopus 2-s2.0-85048325440
dc.identifier.uri https://hdl.handle.net/20.500.12416/9895
dc.language.iso en en_US
dc.publisher Editura Acad Romane en_US
dc.relation.ispartof Romanian Reports in Physics en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Fractional Variational Problems en_US
dc.subject Fractional Optimal Control Problems en_US
dc.subject Fractional-Order Gegenbauer Functions en_US
dc.title A Computationally Efficient Method for A Class of Fractional Variational and Optimal Control Problems Using Fractional Gegenbauer Functions en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Hafez, Ramy/0000-0001-9533-3171
gdc.author.id Z .Amin, Ahmed/0000-0003-4044-3335
gdc.author.id Zaky, Mahmoud/0000-0002-3376-7238
gdc.author.id Abdelkawy, Mohamed/0000-0002-9043-9644
gdc.author.scopusid 57189895424
gdc.author.scopusid 6602467804
gdc.author.scopusid 38861466200
gdc.author.scopusid 56704936300
gdc.author.scopusid 36859215200
gdc.author.scopusid 57198456441
gdc.author.scopusid 7005872966
gdc.author.wosid Amin, Ahmed/Aak-6677-2020
gdc.author.wosid Hafez, Ramy/Aaa-5936-2020
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.author.wosid Doha, Eid/L-1723-2019
gdc.author.wosid Ezz-Eldien, Samer/Agk-8059-2022
gdc.author.wosid Abdelkawy, M/Aeb-7974-2022
gdc.author.wosid Zaky, Mahmoud/B-2797-2015
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [El-Kalaawy, A. A.; Abdelkawy, M. A.] Beni Suef Univ, Dept Math, Fac Sci, Bani Suwayf, Egypt; [Doha, E. H.] Cairo Univ, Dept Math, Fac Sci, Giza, Egypt; [Ezz-Eldien, S. S.] Assiut Univ, Dept Math, Fac Sci, New Valley Branch, El Kharja 72511, Egypt; [Abdelkawy, M. A.] Al Imam Mohammad Ibn Saud Islamic Univ IMSIU, Dept Math & Stat, Coll Sci, Riyadh, Saudi Arabia; [Hafez, R. M.] Univ Tabuk, Dept Math, Alwagjh Univ Coll, Tabuk, Saudi Arabia; [Hafez, R. M.] Modern Acad, Dept Basic Sci, Inst Informat Technol, Cairo, Egypt; [Amin, A. Z. M.] CIC, Dept Basic Sci, Inst Engn, Giza, Egypt; [Baleanu, D.] Cankaya Univ, Dept Math, TR-06530 Ankara, Balgat, Turkey; [Baleanu, D.] Inst Space Sci, Magurele, Romania; [Zaky, M. A.] Natl Res Ctr, Dept Appl Math, Giza 12622, Egypt en_US
gdc.description.issue 2 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.volume 70 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.wos WOS:000438016900005
gdc.scopus.citedcount 22
gdc.wos.citedcount 23
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 0b9123e4-4136-493b-9ffd-be856af2cdb1

Files