Δ-Β Integral Operators for a Space of Locally Integrable Generalized Functions
| dc.contributor.author | Baleanu, Dumitru | |
| dc.contributor.author | Nisar, Kottakkaran Sooppy | |
| dc.contributor.author | Al-Omari, Shrideh Khalaf | |
| dc.date.accessioned | 2022-03-31T13:21:07Z | |
| dc.date.accessioned | 2025-09-18T14:08:52Z | |
| dc.date.available | 2022-03-31T13:21:07Z | |
| dc.date.available | 2025-09-18T14:08:52Z | |
| dc.date.issued | 2020 | |
| dc.description | Al-Omari, Shrideh/0000-0001-8955-5552 | en_US |
| dc.description.abstract | In this article, we give a definition and discuss several properties of the delta-beta -Gabor integral operator in a class of locally integrable Boehmians. We derive delta sequences, convolution products and establish a convolution theorem for the given delta-beta -integral. By treating the delta sequences, we derive the necessary axioms to elevate the delta-beta -Gabor integrable spaces of Boehmians. The said generalized delta-beta -Gabor integral is, therefore, considered as a one-to-one and onto mapping continuous with respect to the usual convergence of the demonstrated spaces. In addition to certain obtained inversion formula, some consistency results are also given. | en_US |
| dc.identifier.citation | Al-Omari, Shrideh Khalaf; Baleanu, Dumitru; Nisar, Kottakkaran Sooppy (2020). "delta-beta-Gabor integral operators for a space of locally integrable generalized functions", Advances in Difference Equations, Vol. 2020, No. 1. | en_US |
| dc.identifier.doi | 10.1186/s13662-020-02961-x | |
| dc.identifier.issn | 1687-1847 | |
| dc.identifier.scopus | 2-s2.0-85090994650 | |
| dc.identifier.uri | https://doi.org/10.1186/s13662-020-02961-x | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/13236 | |
| dc.language.iso | en | en_US |
| dc.publisher | Springer | en_US |
| dc.relation.ispartof | Advances in Difference Equations | |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Delta-Beta-Gabor Integral | en_US |
| dc.subject | Time-Frequency Integral | en_US |
| dc.subject | Signal | en_US |
| dc.subject | Gabor Integral | en_US |
| dc.subject | Boehmian | en_US |
| dc.subject | Window Function | en_US |
| dc.subject | 54C40 | en_US |
| dc.subject | 14E20 | en_US |
| dc.subject | 46E25 | en_US |
| dc.subject | 20C20 | en_US |
| dc.title | Δ-Β Integral Operators for a Space of Locally Integrable Generalized Functions | en_US |
| dc.title | delta-beta-Gabor integral operators for a space of locally integrable generalized functions | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Al-Omari, Shrideh/0000-0001-8955-5552 | |
| gdc.author.scopusid | 14828685700 | |
| gdc.author.scopusid | 7005872966 | |
| gdc.author.scopusid | 56715663200 | |
| gdc.author.wosid | Baleanu, Dumitru/B-9936-2012 | |
| gdc.author.wosid | Nisar, Kottakkaran/F-7559-2015 | |
| gdc.author.wosid | Al-Omari, Shrideh/E-5065-2017 | |
| gdc.author.yokid | 56389 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Al-Omari, Shrideh Khalaf] Al Balqa Appl Univ, Fac Engn Technol, Dept Phys & Basic Sci, Amman 11134, Jordan; [Baleanu, Dumitru] Cankaya Univ, Dept Math, Eskisehir Yolu 29 Km, TR-06810 Ankara, Turkey; [Nisar, Kottakkaran Sooppy] Prince Sattam Bin Abdulaziz Univ, Dept Math, Coll Arts & Sci, Wadi Aldawasir, Saudi Arabia | en_US |
| gdc.description.issue | 1 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.volume | 2020 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W3087119030 | |
| gdc.identifier.wos | WOS:000573617700002 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 0.0 | |
| gdc.oaire.influence | 2.4895952E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | Artificial neural network | |
| gdc.oaire.keywords | Gabor integral | |
| gdc.oaire.keywords | Geometry | |
| gdc.oaire.keywords | Space (punctuation) | |
| gdc.oaire.keywords | Mathematical analysis | |
| gdc.oaire.keywords | Convolution (computer science) | |
| gdc.oaire.keywords | Time-frequency integral | |
| gdc.oaire.keywords | Machine learning | |
| gdc.oaire.keywords | QA1-939 | |
| gdc.oaire.keywords | FOS: Mathematics | |
| gdc.oaire.keywords | Fourier integral operator | |
| gdc.oaire.keywords | Advanced Techniques in Digital Signal Processing | |
| gdc.oaire.keywords | Axiom | |
| gdc.oaire.keywords | Signal | |
| gdc.oaire.keywords | Integrable system | |
| gdc.oaire.keywords | Algebra over a field | |
| gdc.oaire.keywords | Convolution theorem | |
| gdc.oaire.keywords | Applied Mathematics | |
| gdc.oaire.keywords | δ-β-Gabor integral | |
| gdc.oaire.keywords | Fractional Fourier Transform Analysis | |
| gdc.oaire.keywords | Pure mathematics | |
| gdc.oaire.keywords | Operator theory | |
| gdc.oaire.keywords | Linguistics | |
| gdc.oaire.keywords | Window function | |
| gdc.oaire.keywords | Computer science | |
| gdc.oaire.keywords | Fourier analysis | |
| gdc.oaire.keywords | Fractional Fourier transform | |
| gdc.oaire.keywords | FOS: Philosophy, ethics and religion | |
| gdc.oaire.keywords | Philosophy | |
| gdc.oaire.keywords | Physical Sciences | |
| gdc.oaire.keywords | Computer Science | |
| gdc.oaire.keywords | Signal Processing | |
| gdc.oaire.keywords | Modulation Spaces | |
| gdc.oaire.keywords | Fourier transform | |
| gdc.oaire.keywords | FOS: Languages and literature | |
| gdc.oaire.keywords | Boehmian | |
| gdc.oaire.keywords | Computer Vision and Pattern Recognition | |
| gdc.oaire.keywords | Image Denoising Techniques and Algorithms | |
| gdc.oaire.keywords | Mathematics | |
| gdc.oaire.keywords | Convolution as an integral transform | |
| gdc.oaire.keywords | \(\delta\)-\(\beta\)-Gabor integral | |
| gdc.oaire.keywords | Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type | |
| gdc.oaire.keywords | Special integral transforms (Legendre, Hilbert, etc.) | |
| gdc.oaire.keywords | Nontrigonometric harmonic analysis involving wavelets and other special systems | |
| gdc.oaire.keywords | window function | |
| gdc.oaire.keywords | Integral operators | |
| gdc.oaire.keywords | time-frequency integral | |
| gdc.oaire.keywords | Integral transforms in distribution spaces | |
| gdc.oaire.keywords | signal | |
| gdc.oaire.popularity | 1.3503004E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.oaire.sciencefields | 0101 mathematics | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 0.0 | |
| gdc.openalex.normalizedpercentile | 0.16 | |
| gdc.opencitations.count | 0 | |
| gdc.plumx.mendeley | 2 | |
| gdc.plumx.scopuscites | 1 | |
| gdc.scopus.citedcount | 1 | |
| gdc.virtual.author | Baleanu, Dumitru | |
| gdc.wos.citedcount | 0 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |
