Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Δ-Β Integral Operators for a Space of Locally Integrable Generalized Functions

dc.contributor.author Baleanu, Dumitru
dc.contributor.author Nisar, Kottakkaran Sooppy
dc.contributor.author Al-Omari, Shrideh Khalaf
dc.date.accessioned 2022-03-31T13:21:07Z
dc.date.accessioned 2025-09-18T14:08:52Z
dc.date.available 2022-03-31T13:21:07Z
dc.date.available 2025-09-18T14:08:52Z
dc.date.issued 2020
dc.description Al-Omari, Shrideh/0000-0001-8955-5552 en_US
dc.description.abstract In this article, we give a definition and discuss several properties of the delta-beta -Gabor integral operator in a class of locally integrable Boehmians. We derive delta sequences, convolution products and establish a convolution theorem for the given delta-beta -integral. By treating the delta sequences, we derive the necessary axioms to elevate the delta-beta -Gabor integrable spaces of Boehmians. The said generalized delta-beta -Gabor integral is, therefore, considered as a one-to-one and onto mapping continuous with respect to the usual convergence of the demonstrated spaces. In addition to certain obtained inversion formula, some consistency results are also given. en_US
dc.identifier.citation Al-Omari, Shrideh Khalaf; Baleanu, Dumitru; Nisar, Kottakkaran Sooppy (2020). "delta-beta-Gabor integral operators for a space of locally integrable generalized functions", Advances in Difference Equations, Vol. 2020, No. 1. en_US
dc.identifier.doi 10.1186/s13662-020-02961-x
dc.identifier.issn 1687-1847
dc.identifier.scopus 2-s2.0-85090994650
dc.identifier.uri https://doi.org/10.1186/s13662-020-02961-x
dc.identifier.uri https://hdl.handle.net/20.500.12416/13236
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.ispartof Advances in Difference Equations
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Delta-Beta-Gabor Integral en_US
dc.subject Time-Frequency Integral en_US
dc.subject Signal en_US
dc.subject Gabor Integral en_US
dc.subject Boehmian en_US
dc.subject Window Function en_US
dc.subject 54C40 en_US
dc.subject 14E20 en_US
dc.subject 46E25 en_US
dc.subject 20C20 en_US
dc.title Δ-Β Integral Operators for a Space of Locally Integrable Generalized Functions en_US
dc.title delta-beta-Gabor integral operators for a space of locally integrable generalized functions tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Al-Omari, Shrideh/0000-0001-8955-5552
gdc.author.scopusid 14828685700
gdc.author.scopusid 7005872966
gdc.author.scopusid 56715663200
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.author.wosid Nisar, Kottakkaran/F-7559-2015
gdc.author.wosid Al-Omari, Shrideh/E-5065-2017
gdc.author.yokid 56389
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Al-Omari, Shrideh Khalaf] Al Balqa Appl Univ, Fac Engn Technol, Dept Phys & Basic Sci, Amman 11134, Jordan; [Baleanu, Dumitru] Cankaya Univ, Dept Math, Eskisehir Yolu 29 Km, TR-06810 Ankara, Turkey; [Nisar, Kottakkaran Sooppy] Prince Sattam Bin Abdulaziz Univ, Dept Math, Coll Arts & Sci, Wadi Aldawasir, Saudi Arabia en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.volume 2020 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W3087119030
gdc.identifier.wos WOS:000573617700002
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.4895952E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Artificial neural network
gdc.oaire.keywords Gabor integral
gdc.oaire.keywords Geometry
gdc.oaire.keywords Space (punctuation)
gdc.oaire.keywords Mathematical analysis
gdc.oaire.keywords Convolution (computer science)
gdc.oaire.keywords Time-frequency integral
gdc.oaire.keywords Machine learning
gdc.oaire.keywords QA1-939
gdc.oaire.keywords FOS: Mathematics
gdc.oaire.keywords Fourier integral operator
gdc.oaire.keywords Advanced Techniques in Digital Signal Processing
gdc.oaire.keywords Axiom
gdc.oaire.keywords Signal
gdc.oaire.keywords Integrable system
gdc.oaire.keywords Algebra over a field
gdc.oaire.keywords Convolution theorem
gdc.oaire.keywords Applied Mathematics
gdc.oaire.keywords δ-β-Gabor integral
gdc.oaire.keywords Fractional Fourier Transform Analysis
gdc.oaire.keywords Pure mathematics
gdc.oaire.keywords Operator theory
gdc.oaire.keywords Linguistics
gdc.oaire.keywords Window function
gdc.oaire.keywords Computer science
gdc.oaire.keywords Fourier analysis
gdc.oaire.keywords Fractional Fourier transform
gdc.oaire.keywords FOS: Philosophy, ethics and religion
gdc.oaire.keywords Philosophy
gdc.oaire.keywords Physical Sciences
gdc.oaire.keywords Computer Science
gdc.oaire.keywords Signal Processing
gdc.oaire.keywords Modulation Spaces
gdc.oaire.keywords Fourier transform
gdc.oaire.keywords FOS: Languages and literature
gdc.oaire.keywords Boehmian
gdc.oaire.keywords Computer Vision and Pattern Recognition
gdc.oaire.keywords Image Denoising Techniques and Algorithms
gdc.oaire.keywords Mathematics
gdc.oaire.keywords Convolution as an integral transform
gdc.oaire.keywords \(\delta\)-\(\beta\)-Gabor integral
gdc.oaire.keywords Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
gdc.oaire.keywords Special integral transforms (Legendre, Hilbert, etc.)
gdc.oaire.keywords Nontrigonometric harmonic analysis involving wavelets and other special systems
gdc.oaire.keywords window function
gdc.oaire.keywords Integral operators
gdc.oaire.keywords time-frequency integral
gdc.oaire.keywords Integral transforms in distribution spaces
gdc.oaire.keywords signal
gdc.oaire.popularity 1.3503004E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 01 natural sciences
gdc.oaire.sciencefields 0101 mathematics
gdc.openalex.collaboration International
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.16
gdc.opencitations.count 0
gdc.plumx.mendeley 2
gdc.plumx.scopuscites 1
gdc.scopus.citedcount 1
gdc.virtual.author Baleanu, Dumitru
gdc.wos.citedcount 0
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files