On Multiparametrized Integral Inequalities Via Generalized Α-Convexity on Fractal Set
| dc.contributor.author | Xu, Hongyan | |
| dc.contributor.author | Lakhdari, Abdelghani | |
| dc.contributor.author | Jarad, Fahd | |
| dc.contributor.author | Abdeljawad, Thabet | |
| dc.contributor.author | Meftah, Badreddine | |
| dc.date.accessioned | 2025-05-11T17:05:47Z | |
| dc.date.available | 2025-05-11T17:05:47Z | |
| dc.date.issued | 2025 | |
| dc.description.abstract | This article explores integral inequalities within the framework of local fractional calculus, focusing on the class of generalized alpha-convex functions. It introduces a novel extension of the Hermite-Hadamard inequality and derives numerous fractal inequalities through a novel multiparameterized identity. The primary aim is to generalize existing inequalities, highlighting that previously established results can be obtained by setting specific parameters within the main inequalities. The validity of the derived results is demonstrated through an illustrative example, accompanied by 2D and 3D graphical representations. Lastly, the paper discusses potential practical applications of these findings. | en_US |
| dc.description.sponsorship | Qinglan Project of Jiangsu Province of China; Suqian Talent Xiongying Plan of Suqian; Talent Introduction Research Foundation of Suqian University [106-CK00042/028] | en_US |
| dc.description.sponsorship | Qinglan Project of Jiangsu Province of China; Suqian Talent Xiongying Plan of Suqian; Talent Introduction Research Foundation of Suqian University, Grant/Award Number: 106-CK00042/028 | en_US |
| dc.identifier.doi | 10.1002/mma.10368 | |
| dc.identifier.issn | 0170-4214 | |
| dc.identifier.issn | 1099-1476 | |
| dc.identifier.scopus | 2-s2.0-85200033137 | |
| dc.identifier.uri | https://doi.org/10.1002/mma.10368 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/9660 | |
| dc.language.iso | en | en_US |
| dc.publisher | Wiley | en_US |
| dc.relation.ispartof | Mathematical Methods in the Applied Sciences | |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Fractal Set | en_US |
| dc.subject | Generalized Alpha-Convex Functions | en_US |
| dc.subject | Hermite-Hadamard Inequality | en_US |
| dc.subject | Local Fractional Integral | en_US |
| dc.title | On Multiparametrized Integral Inequalities Via Generalized Α-Convexity on Fractal Set | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.scopusid | 55355350700 | |
| gdc.author.scopusid | 57204202488 | |
| gdc.author.scopusid | 15622742900 | |
| gdc.author.scopusid | 6508051762 | |
| gdc.author.scopusid | 55390580800 | |
| gdc.author.wosid | Xu, Hongyan/I-4518-2017 | |
| gdc.author.wosid | Jarad, Fahd/T-8333-2018 | |
| gdc.author.wosid | Abdeljawad, Thabet/T-8298-2018 | |
| gdc.author.wosid | Meftah, Badreddine/Aac-2470-2020 | |
| gdc.author.wosid | Lakhdari, Abdelghani/Itv-7609-2023 | |
| gdc.bip.impulseclass | C4 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Xu, Hongyan] Suqian Univ, Sch Arts & Sci, Suqian, Peoples R China; [Xu, Hongyan] Shangrao Normal Univ, Sch Math & Comp Sci Shangrao, Shangrao, Jiangxi, Peoples R China; [Lakhdari, Abdelghani] Natl Higher Sch Technol & Engn, Dept CPST, Annaba, Algeria; [Jarad, Fahd] Cankaya Univ, Dept Math, Ankara, Turkiye; [Jarad, Fahd] Gulf Univ Sci & Technol, Ctr Appl Math & Bioinformat, Hawally, Kuwait; [Abdeljawad, Thabet] Prince Sultan Univ, Dept Math & Sci, Riyadh 11586, Saudi Arabia; [Abdeljawad, Thabet] China Med Univ Hosp, Dept Med Res, Taichung, Taiwan; [Abdeljawad, Thabet] Kyung Hee Univ, Dept Math, Seoul, South Korea; [Abdeljawad, Thabet] Sefako Makgatho Hlth Sci Univ, Dept Math & Appl Math, Garankuwa, South Africa; [Meftah, Badreddine] Univ 8 May 1945, Dept Math, Guelma, Algeria | en_US |
| gdc.description.endpage | 1002 | en_US |
| gdc.description.issue | 1 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 980 | en_US |
| gdc.description.volume | 48 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W4401193472 | |
| gdc.identifier.wos | WOS:001280766000001 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.accesstype | HYBRID | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 11.0 | |
| gdc.oaire.influence | 3.0836043E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | local fractional integral | |
| gdc.oaire.keywords | Hermite-Hadamard inequality | |
| gdc.oaire.keywords | generalized \(\alpha\)-convex functions | |
| gdc.oaire.keywords | Inequalities involving derivatives and differential and integral operators | |
| gdc.oaire.keywords | Inequalities for sums, series and integrals | |
| gdc.oaire.keywords | fractal set | |
| gdc.oaire.keywords | Convexity of real functions in one variable, generalizations | |
| gdc.oaire.popularity | 1.0801673E-8 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0103 physical sciences | |
| gdc.oaire.sciencefields | 0101 mathematics | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 22.7651206 | |
| gdc.openalex.normalizedpercentile | 0.99 | |
| gdc.openalex.toppercent | TOP 1% | |
| gdc.opencitations.count | 0 | |
| gdc.plumx.crossrefcites | 1 | |
| gdc.plumx.scopuscites | 13 | |
| gdc.scopus.citedcount | 13 | |
| gdc.virtual.author | Jarad, Fahd | |
| gdc.virtual.author | Abdeljawad, Thabet | |
| gdc.wos.citedcount | 14 | |
| relation.isAuthorOfPublication | c818455d-5734-4abd-8d29-9383dae37406 | |
| relation.isAuthorOfPublication | ab09a09b-0017-4ffe-a8fe-b9b0499b2c01 | |
| relation.isAuthorOfPublication.latestForDiscovery | c818455d-5734-4abd-8d29-9383dae37406 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |
