Existence Theorems and Hyers-Ulam Stability for a Coupled System of Fractional Differential Equations With P-Laplacian Operator
| dc.contributor.author | Li, Yongjin | |
| dc.contributor.author | Chen, Wen | |
| dc.contributor.author | Baleanu, Dumitru | |
| dc.contributor.author | Khan, Aziz | |
| dc.contributor.author | Khan, Hasib | |
| dc.date.accessioned | 2019-12-10T07:05:14Z | |
| dc.date.accessioned | 2025-09-18T12:05:30Z | |
| dc.date.available | 2019-12-10T07:05:14Z | |
| dc.date.available | 2025-09-18T12:05:30Z | |
| dc.date.issued | 2017 | |
| dc.description | Khan, Aziz/0000-0001-6185-9394; Khan, Hasib/0000-0002-7186-8435 | en_US |
| dc.description.abstract | In this paper, we study the existence and uniqueness of solution (EUS) as well as Hyers-Ulam stability for a coupled system of FDEs in Caputo's sense with nonlinear p-Laplacian operator. For this purpose, the suggested coupled system is transferred to an integral system with the help of four Green functions G(alpha 1) (t, s), G(beta 1) (t, s), G(alpha 2) (t, s), G(beta 2) (t, s). Then using topological degree theory and Leray-Schauder's-type fixed point theorem, existence and uniqueness results are proved. An illustrative and expressive example is given as an application of the results. | en_US |
| dc.description.sponsorship | National Natural Science Foundation of China [11571378]; China Government | en_US |
| dc.description.sponsorship | This work was supported by the National Natural Science Foundation of China (11571378) and China Government Young Excellant Talent Program. | en_US |
| dc.identifier.citation | Khan, Hasib...et al. (2017). Existence theorems and Hyers-Ulam stability for a coupled system of fractional differential equations with p-Laplacian operator. Boundary Value Problems. | en_US |
| dc.identifier.doi | 10.1186/s13661-017-0878-6 | |
| dc.identifier.issn | 1687-2770 | |
| dc.identifier.scopus | 2-s2.0-85032575117 | |
| dc.identifier.uri | https://doi.org/10.1186/s13661-017-0878-6 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/10643 | |
| dc.language.iso | en | en_US |
| dc.publisher | Springer | en_US |
| dc.relation.ispartof | Boundary Value Problems | |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Caputo'S Fractional Derivative | en_US |
| dc.subject | Coupled System Of Fdes | en_US |
| dc.subject | Topological Degree Theory | en_US |
| dc.subject | Existence And Uniqueness | en_US |
| dc.subject | Hyers-Ulam Stability | en_US |
| dc.title | Existence Theorems and Hyers-Ulam Stability for a Coupled System of Fractional Differential Equations With P-Laplacian Operator | en_US |
| dc.title | Existence theorems and Hyers-Ulam stability for a coupled system of fractional differential equations with p-Laplacian operator | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Khan, Aziz/0000-0001-6185-9394 | |
| gdc.author.id | Khan, Hasib/0000-0002-7186-8435 | |
| gdc.author.scopusid | 55258301900 | |
| gdc.author.scopusid | 57203666550 | |
| gdc.author.scopusid | 55715957800 | |
| gdc.author.scopusid | 7005872966 | |
| gdc.author.scopusid | 56865012200 | |
| gdc.author.wosid | Baleanu, Dumitru/B-9936-2012 | |
| gdc.author.wosid | Khan, Hasib/Afj-9925-2022 | |
| gdc.author.wosid | Khan, Aziz/Aag-4626-2021 | |
| gdc.author.yokid | 56389 | |
| gdc.bip.impulseclass | C4 | |
| gdc.bip.influenceclass | C4 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Khan, Hasib; Chen, Wen] Hohai Univ, Coll Engn Mech & Mat, Nanjing 211100, Jiangsu, Peoples R China; [Khan, Hasib] Shaheed Benazir Bhutto Univ, Sheringal 18000, Dir Upper, Pakistan; [Li, Yongjin] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China; [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, MG-23, Magurele 76900, Romania; [Khan, Aziz] Univ Peshawar, Dept Math, Peshawar 25000, Pakistan | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q2 | |
| gdc.description.volume | 2017 | |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W2766189687 | |
| gdc.identifier.wos | WOS:000413961700001 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 17.0 | |
| gdc.oaire.influence | 5.8473177E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | Biochemistry | |
| gdc.oaire.keywords | Gene | |
| gdc.oaire.keywords | Differential equation | |
| gdc.oaire.keywords | Schauder fixed point theorem | |
| gdc.oaire.keywords | Stability (learning theory) | |
| gdc.oaire.keywords | Boundary value problem | |
| gdc.oaire.keywords | BETA (programming language) | |
| gdc.oaire.keywords | Numerical Analysis | |
| gdc.oaire.keywords | Ecology | |
| gdc.oaire.keywords | Applied Mathematics | |
| gdc.oaire.keywords | Physics | |
| gdc.oaire.keywords | Programming language | |
| gdc.oaire.keywords | Chemistry | |
| gdc.oaire.keywords | Laplace operator | |
| gdc.oaire.keywords | Picard–Lindelöf theorem | |
| gdc.oaire.keywords | Modeling and Simulation | |
| gdc.oaire.keywords | Physical Sciences | |
| gdc.oaire.keywords | Uniqueness | |
| gdc.oaire.keywords | Type (biology) | |
| gdc.oaire.keywords | existence and uniqueness | |
| gdc.oaire.keywords | Caputo’s fractional derivative | |
| gdc.oaire.keywords | Operator (biology) | |
| gdc.oaire.keywords | Theory and Applications of Fractional Differential Equations | |
| gdc.oaire.keywords | Existence Results | |
| gdc.oaire.keywords | Mathematical analysis | |
| gdc.oaire.keywords | Quantum mechanics | |
| gdc.oaire.keywords | coupled system of FDEs | |
| gdc.oaire.keywords | Numerical Integration Methods for Differential Equations | |
| gdc.oaire.keywords | Machine learning | |
| gdc.oaire.keywords | FOS: Mathematics | |
| gdc.oaire.keywords | Hyers-Ulam stability | |
| gdc.oaire.keywords | Fixed-point theorem | |
| gdc.oaire.keywords | Degree (music) | |
| gdc.oaire.keywords | Biology | |
| gdc.oaire.keywords | Anomalous Diffusion Modeling and Analysis | |
| gdc.oaire.keywords | QA299.6-433 | |
| gdc.oaire.keywords | p-Laplacian | |
| gdc.oaire.keywords | Pure mathematics | |
| gdc.oaire.keywords | Acoustics | |
| gdc.oaire.keywords | Computer science | |
| gdc.oaire.keywords | topological degree theory | |
| gdc.oaire.keywords | FOS: Biological sciences | |
| gdc.oaire.keywords | Nonlinear system | |
| gdc.oaire.keywords | Repressor | |
| gdc.oaire.keywords | Transcription factor | |
| gdc.oaire.keywords | Analysis | |
| gdc.oaire.keywords | Mathematics | |
| gdc.oaire.keywords | Ordinary differential equation | |
| gdc.oaire.keywords | Stability, separation, extension, and related topics for functional equations | |
| gdc.oaire.keywords | Fractional derivatives and integrals | |
| gdc.oaire.keywords | Caputo's fractional derivative | |
| gdc.oaire.keywords | Fractional partial differential equations | |
| gdc.oaire.popularity | 2.9388033E-8 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.oaire.sciencefields | 0101 mathematics | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 10.40022419 | |
| gdc.openalex.normalizedpercentile | 0.99 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 47 | |
| gdc.plumx.crossrefcites | 36 | |
| gdc.plumx.mendeley | 3 | |
| gdc.plumx.scopuscites | 66 | |
| gdc.publishedmonth | 10 | |
| gdc.scopus.citedcount | 66 | |
| gdc.virtual.author | Baleanu, Dumitru | |
| gdc.wos.citedcount | 56 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |
