Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

An efficient computational approach for local fractional Poisson equation in fractal media

No Thumbnail Available

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Events

Abstract

In this article, we analyze local fractional Poisson equation (LFPE) by employing q-homotopy analysis transform method (q-HATM). The PE describes the potential field due to a given charge with the potential field known, one can then calculate gravitational or electrostatic field in fractal domain. It is an elliptic partial differential equations (PDE) that regularly appear in the modeling of the electromagnetic mechanism. In this work, PE is studied in the local fractional operator sense. To handle the LFPE some illustrative example is discussed. The required results are presented to demonstrate the simple and well-organized nature of q-HATM to handle PDE having fractional derivative in local fractional operator sense. The results derived by the discussed technique reveal that the suggested scheme is easy to employ and computationally very accurate. The graphical representation of solution of LFPE yields interesting and better physical consequences of Poisson equation with local fractional derivative.

Description

Keywords

Local Fractional Derivative, Local Fractional Laplace Trans-Form, Local Fractional Poisson Equation, Q-Homotopy Analy-Sis Transform Method

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Singh, Jagdev...et al. (2021). "An efficient computational approach for local fractional Poisson equation in fractal media", Numerical Methods for Partial Differential Equations, Vol. 37, No. 2, pp. 1439-1448.

WoS Q

Scopus Q

Source

Numerical Methods for Partial Differential Equations

Volume

37

Issue

2

Start Page

1439

End Page

1448