Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

An efficient computational approach for local fractional Poisson equation in fractal media

dc.authorid Ahmadian, Ali/0000-0002-0106-7050
dc.authorid Rathore, Sushila/0000-0002-0259-0329
dc.authorid Kumar, Devendra/0000-0003-4249-6326
dc.authorid Salimi, Mehdi/0000-0002-6537-6346
dc.authorid Salahshour, Soheil/0000-0003-1390-3551
dc.authorscopusid 55467157900
dc.authorscopusid 55602202100
dc.authorscopusid 56015578200
dc.authorscopusid 57192576535
dc.authorscopusid 7005872966
dc.authorscopusid 56189811500
dc.authorscopusid 56189811500
dc.authorwosid Salimi, Mehdi/Abe-9446-2021
dc.authorwosid Singh, Jagdev/Aac-1015-2019
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.authorwosid Kumar, Devendra/B-9638-2017
dc.authorwosid Salahshour, Soheil/K-4817-2019
dc.authorwosid Ahmadian, Ali/N-3697-2015
dc.contributor.author Singh, Jagdev
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Ahmadian, Ali
dc.contributor.author Rathore, Sushila
dc.contributor.author Kumar, Devendra
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Salimi, Mehdi
dc.contributor.author Salahshour, Soheil
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2022-03-16T10:39:05Z
dc.date.available 2022-03-16T10:39:05Z
dc.date.issued 2021
dc.department Çankaya University en_US
dc.department-temp [Singh, Jagdev] JECRC Univ, Dept Math, Jaipur, Rajasthan, India; [Ahmadian, Ali] Natl Univ Malaysia, Inst Ind Revolut 4 0, UKM, Bangi 43600, Selangor, Malaysia; [Rathore, Sushila] Vivekananda Global Univ, Dept Phys, Jaipur, Rajasthan, India; [Kumar, Devendra] Univ Rajasthan, Dept Math, Jaipur, Rajasthan, India; [Baleanu, Dumitru] Cankaya Univ, Fac Arts & Sci, Dept Math, Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania; [Salimi, Mehdi] McMaster Univ, Dept Math & Stat, Hamiltona, ON, Canada; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkey; [Baleanu, Dumitru] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan; [Salimi, Mehdi] Tech Univ Dresden, Ctr Dynam, Fac Math, D-01062 Dresden, Germany en_US
dc.description Ahmadian, Ali/0000-0002-0106-7050; Rathore, Sushila/0000-0002-0259-0329; Kumar, Devendra/0000-0003-4249-6326; Salimi, Mehdi/0000-0002-6537-6346; Salahshour, Soheil/0000-0003-1390-3551 en_US
dc.description.abstract In this article, we analyze local fractional Poisson equation (LFPE) by employing q-homotopy analysis transform method (q-HATM). The PE describes the potential field due to a given charge with the potential field known, one can then calculate gravitational or electrostatic field in fractal domain. It is an elliptic partial differential equations (PDE) that regularly appear in the modeling of the electromagnetic mechanism. In this work, PE is studied in the local fractional operator sense. To handle the LFPE some illustrative example is discussed. The required results are presented to demonstrate the simple and well-organized nature of q-HATM to handle PDE having fractional derivative in local fractional operator sense. The results derived by the discussed technique reveal that the suggested scheme is easy to employ and computationally very accurate. The graphical representation of solution of LFPE yields interesting and better physical consequences of Poisson equation with local fractional derivative. en_US
dc.description.publishedMonth 3
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Singh, Jagdev...et al. (2021). "An efficient computational approach for local fractional Poisson equation in fractal media", Numerical Methods for Partial Differential Equations, Vol. 37, No. 2, pp. 1439-1448. en_US
dc.identifier.doi 10.1002/num.22589
dc.identifier.endpage 1448 en_US
dc.identifier.issn 0749-159X
dc.identifier.issn 1098-2426
dc.identifier.issue 2 en_US
dc.identifier.scopus 2-s2.0-85097031681
dc.identifier.scopusquality Q1
dc.identifier.startpage 1439 en_US
dc.identifier.uri https://doi.org/10.1002/num.22589
dc.identifier.volume 37 en_US
dc.identifier.wos WOS:000584067200001
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Wiley en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 71
dc.subject Local Fractional Derivative en_US
dc.subject Local Fractional Laplace Transform en_US
dc.subject Local Fractional Poisson Equation en_US
dc.subject Q&#8208 en_US
dc.subject Homotopy Analysis Transform Method en_US
dc.title An efficient computational approach for local fractional Poisson equation in fractal media tr_TR
dc.title An Efficient Computational Approach for Local Fractional Poisson Equation in Fractal Media en_US
dc.type Article en_US
dc.wos.citedbyCount 56
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: