An efficient computational approach for local fractional Poisson equation in fractal media
dc.authorid | Ahmadian, Ali/0000-0002-0106-7050 | |
dc.authorid | Rathore, Sushila/0000-0002-0259-0329 | |
dc.authorid | Kumar, Devendra/0000-0003-4249-6326 | |
dc.authorid | Salimi, Mehdi/0000-0002-6537-6346 | |
dc.authorid | Salahshour, Soheil/0000-0003-1390-3551 | |
dc.authorscopusid | 55467157900 | |
dc.authorscopusid | 55602202100 | |
dc.authorscopusid | 56015578200 | |
dc.authorscopusid | 57192576535 | |
dc.authorscopusid | 7005872966 | |
dc.authorscopusid | 56189811500 | |
dc.authorscopusid | 56189811500 | |
dc.authorwosid | Salimi, Mehdi/Abe-9446-2021 | |
dc.authorwosid | Singh, Jagdev/Aac-1015-2019 | |
dc.authorwosid | Baleanu, Dumitru/B-9936-2012 | |
dc.authorwosid | Kumar, Devendra/B-9638-2017 | |
dc.authorwosid | Salahshour, Soheil/K-4817-2019 | |
dc.authorwosid | Ahmadian, Ali/N-3697-2015 | |
dc.contributor.author | Singh, Jagdev | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Ahmadian, Ali | |
dc.contributor.author | Rathore, Sushila | |
dc.contributor.author | Kumar, Devendra | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Salimi, Mehdi | |
dc.contributor.author | Salahshour, Soheil | |
dc.contributor.authorID | 56389 | tr_TR |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2022-03-16T10:39:05Z | |
dc.date.available | 2022-03-16T10:39:05Z | |
dc.date.issued | 2021 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Singh, Jagdev] JECRC Univ, Dept Math, Jaipur, Rajasthan, India; [Ahmadian, Ali] Natl Univ Malaysia, Inst Ind Revolut 4 0, UKM, Bangi 43600, Selangor, Malaysia; [Rathore, Sushila] Vivekananda Global Univ, Dept Phys, Jaipur, Rajasthan, India; [Kumar, Devendra] Univ Rajasthan, Dept Math, Jaipur, Rajasthan, India; [Baleanu, Dumitru] Cankaya Univ, Fac Arts & Sci, Dept Math, Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania; [Salimi, Mehdi] McMaster Univ, Dept Math & Stat, Hamiltona, ON, Canada; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkey; [Baleanu, Dumitru] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan; [Salimi, Mehdi] Tech Univ Dresden, Ctr Dynam, Fac Math, D-01062 Dresden, Germany | en_US |
dc.description | Ahmadian, Ali/0000-0002-0106-7050; Rathore, Sushila/0000-0002-0259-0329; Kumar, Devendra/0000-0003-4249-6326; Salimi, Mehdi/0000-0002-6537-6346; Salahshour, Soheil/0000-0003-1390-3551 | en_US |
dc.description.abstract | In this article, we analyze local fractional Poisson equation (LFPE) by employing q-homotopy analysis transform method (q-HATM). The PE describes the potential field due to a given charge with the potential field known, one can then calculate gravitational or electrostatic field in fractal domain. It is an elliptic partial differential equations (PDE) that regularly appear in the modeling of the electromagnetic mechanism. In this work, PE is studied in the local fractional operator sense. To handle the LFPE some illustrative example is discussed. The required results are presented to demonstrate the simple and well-organized nature of q-HATM to handle PDE having fractional derivative in local fractional operator sense. The results derived by the discussed technique reveal that the suggested scheme is easy to employ and computationally very accurate. The graphical representation of solution of LFPE yields interesting and better physical consequences of Poisson equation with local fractional derivative. | en_US |
dc.description.publishedMonth | 3 | |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Singh, Jagdev...et al. (2021). "An efficient computational approach for local fractional Poisson equation in fractal media", Numerical Methods for Partial Differential Equations, Vol. 37, No. 2, pp. 1439-1448. | en_US |
dc.identifier.doi | 10.1002/num.22589 | |
dc.identifier.endpage | 1448 | en_US |
dc.identifier.issn | 0749-159X | |
dc.identifier.issn | 1098-2426 | |
dc.identifier.issue | 2 | en_US |
dc.identifier.scopus | 2-s2.0-85097031681 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 1439 | en_US |
dc.identifier.uri | https://doi.org/10.1002/num.22589 | |
dc.identifier.volume | 37 | en_US |
dc.identifier.wos | WOS:000584067200001 | |
dc.identifier.wosquality | Q1 | |
dc.language.iso | en | en_US |
dc.publisher | Wiley | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.scopus.citedbyCount | 71 | |
dc.subject | Local Fractional Derivative | en_US |
dc.subject | Local Fractional Laplace Transform | en_US |
dc.subject | Local Fractional Poisson Equation | en_US |
dc.subject | Q‐ | en_US |
dc.subject | Homotopy Analysis Transform Method | en_US |
dc.title | An efficient computational approach for local fractional Poisson equation in fractal media | tr_TR |
dc.title | An Efficient Computational Approach for Local Fractional Poisson Equation in Fractal Media | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 56 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: