Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Two Majority Voting Classifiers Applied To Heart Disease Prediction

dc.contributor.author Karadeniz, Talha
dc.contributor.author Maras, Hadi Hakan
dc.contributor.author Tokdemir, Gul
dc.contributor.author Ergezer, Halit
dc.contributor.authorID 34410 tr_TR
dc.contributor.authorID 293396 tr_TR
dc.contributor.other 06.09. Yazılım Mühendisliği
dc.contributor.other 06.01. Bilgisayar Mühendisliği
dc.contributor.other 06.08. Mekatronik Mühendisliği
dc.contributor.other 06. Mühendislik Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2024-01-25T12:34:01Z
dc.date.accessioned 2025-09-18T13:27:22Z
dc.date.available 2024-01-25T12:34:01Z
dc.date.available 2025-09-18T13:27:22Z
dc.date.issued 2023
dc.description Tokdemir, Gul/0000-0003-2441-3056 en_US
dc.description.abstract Two novel methods for heart disease prediction, which use the kurtosis of the features and the Maxwell-Boltzmann distribution, are presented. A Majority Voting approach is applied, and two base classifiers are derived through statistical weight calculation. First, exploitation of attribute kurtosis and attribute Kolmogorov-Smirnov test (KS test) result is done by plugging the base categorizer into a Bagging Classifier. Second, fitting Maxwell random variables to the components and summating KS statistics are used for weight assignment. We have compared state-of-the-art methods to the proposed classifiers and reported the results. According to the findings, our Gaussian distribution and kurtosis-based Majority Voting Bagging Classifier (GKMVB) and Maxwell Distribution-based Majority Voting Bagging Classifier (MKMVB) outperform SVM, ANN, and Naive Bayes algorithms. In this context, which also indicates, especially when we consider that the KS test and kurtosis hack is intuitive, that the proposed routine is promising. Following the state-of-the-art, the experiments were conducted on two well-known datasets of Heart Disease Prediction, namely Statlog, and Spectf. A comparison of Optimized Precision is made to prove the effectiveness of the methods: the newly proposed methods attained 85.6 and 81.0 for Statlog and Spectf, respectively (while the state of the heart attained 83.5 and 71.6, respectively). We claim that the Majority Voting family of classifiers is still open to new developments through appropriate weight assignment. This claim is obvious, especially when its simple structure is fused with the Ensemble Methods' generalization ability and success. en_US
dc.description.publishedMonth 3
dc.identifier.citation Karadeniz, Talha;...et.al. (2023). "Two Majority Voting Classifiers Applied to Heart Disease Prediction", Applied Sciences, Vol.13, No.6. en_US
dc.identifier.doi 10.3390/app13063767
dc.identifier.issn 2076-3417
dc.identifier.scopus 2-s2.0-85151521094
dc.identifier.uri https://doi.org/10.3390/app13063767
dc.identifier.uri https://hdl.handle.net/123456789/12919
dc.language.iso en en_US
dc.publisher Mdpi en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Majority Voting Classifier en_US
dc.subject Kurtosis en_US
dc.subject Gaussian Distribution en_US
dc.subject Bagging Classifier en_US
dc.subject Ensemble Methods en_US
dc.subject Heart Disease Prediction en_US
dc.title Two Majority Voting Classifiers Applied To Heart Disease Prediction en_US
dc.title Two Majority Voting Classifiers Applied to Heart Disease Prediction tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Tokdemir, Gul/0000-0003-2441-3056
gdc.author.institutional Karadeniz, Talha
gdc.author.institutional Maraş, Hadi Hakan
gdc.author.institutional Tokdemir, Gül
gdc.author.institutional Ergezer, Halit
gdc.author.scopusid 35299561100
gdc.author.scopusid 56875440000
gdc.author.scopusid 24333488200
gdc.author.scopusid 8375807400
gdc.author.wosid Ergezer, Halit/S-6502-2017
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Karadeniz, Talha] Koc Univ, Sch Med, KUTTAM, TR-34450 Istanbul, Turkiye; [Maras, Hadi Hakan] Cankaya Univ, Vocat Sch, Dept Comp Programming, TR-06790 Ankara, Turkiye; [Tokdemir, Gul] Cankaya Univ, Fac Engn, Dept Comp Engn, TR-06790 Ankara, Turkiye; [Ergezer, Halit] Cankaya Univ, Fac Engn, Dept Mechatron Engn, TR-06790 Ankara, Turkiye en_US
gdc.description.issue 6 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.volume 13 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W4327622844
gdc.identifier.wos WOS:000957375400001
gdc.openalex.fwci 1.53265733
gdc.openalex.normalizedpercentile 0.83
gdc.opencitations.count 3
gdc.plumx.mendeley 21
gdc.plumx.newscount 1
gdc.plumx.scopuscites 6
gdc.scopus.citedcount 6
gdc.wos.citedcount 3
relation.isAuthorOfPublication 7269fd52-d99c-41aa-863d-cb899d6b3ab7
relation.isAuthorOfPublication 8c98bd6c-e698-4f0e-8c8b-ab2fb09ee9ab
relation.isAuthorOfPublication a10f79e3-acee-4bb2-82f2-548c5fb0d165
relation.isAuthorOfPublication e7c25403-d5d5-4ca7-b1c0-8e155d9a2310
relation.isAuthorOfPublication.latestForDiscovery 7269fd52-d99c-41aa-863d-cb899d6b3ab7
relation.isOrgUnitOfPublication aef16c1d-5b84-42f9-9dab-8029b2b0befd
relation.isOrgUnitOfPublication 12489df3-847d-4936-8339-f3d38607992f
relation.isOrgUnitOfPublication 5b0b2c59-0735-4593-b820-ff3847d58827
relation.isOrgUnitOfPublication 43797d4e-4177-4b74-bd9b-38623b8aeefa
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery aef16c1d-5b84-42f9-9dab-8029b2b0befd

Files