Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Analytic Studies of a Class of Langevin Differential Equations Dominated by a Class of Julia Fractal Functions

No Thumbnail Available

Date

2024

Journal Title

Journal ISSN

Volume Title

Publisher

Univ Kragujevac, Fac Science

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Matematik
Bölümümüz, bilim ve sanayi için gerekli modern bilgilere sahip iş gücünü üretmeyi hedeflemektedir.

Journal Issue

Events

Abstract

. In this investigation, we study a class of analytic functions of type Carath & eacute;o dory style in the open unit disk connected with some fractal domains. This class of analytic functions is formulated based on a kind of Langevin differential equations (LDEs). We aim to study the analytic solvability of LDEs in the advantage of geometric function theory consuming the geometric properties of the Julia fractal (JF) and other fractal connected with the logarithmic function. The analytic solutions of the LDEs are obtainable by employing the subordination theory.

Description

Keywords

Subordination And Superordination, Analytic Function, Univalent Function, Open Unit Disk, Fractal, Fractional Calculus, Fractional Operator

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

N/A

Scopus Q

Q1

Source

Volume

48

Issue

4

Start Page

577

End Page

590