Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Automatic Coastline Detection Using Image Enhancement and Segmentation Algorithms

dc.authorscopusid 36118024900
dc.authorscopusid 56891551000
dc.authorscopusid 56875440000
dc.authorwosid Maras, Hakan/G-1236-2017
dc.contributor.author Maras, Erdem Emin
dc.contributor.author Caniberk, Mustafa
dc.contributor.author Maras, Hadi Hakan
dc.contributor.authorID 34410 tr_TR
dc.contributor.other Bilgisayar Mühendisliği
dc.date.accessioned 2020-04-03T08:43:43Z
dc.date.available 2020-04-03T08:43:43Z
dc.date.issued 2016
dc.department Çankaya University en_US
dc.department-temp [Maras, Erdem Emin] Ondokuz Mayis Univ, Dept Geomat, Samsun, Turkey; [Caniberk, Mustafa] Gen Command Mapping, Dept Photogrammetry, Ankara, Turkey; [Maras, Hadi Hakan] Cankaya Univ, Dept Comp Engn, Ankara, Turkey en_US
dc.description.abstract Coastlines have hosted numerous civilizations since the earliest times of mankind due to the advantages they offer such as natural resources, transportation, arable areas, seafood, trade, and biodiversity. Coastal regions should be monitored vigilantly by planners and control mechanisms, and any changes in these regions should be detected with its human or natural origin, and future plans and possible interventions should be formed in these aspects to maintain ecological balance, sustainable development, and planned urbanization. Integrated coastal zone management (ICZM) provides an important tool to reach that goal. One of the important elements of ICZM is the detection of coastlines. While there are several methods to detect coastlines, remote sensing methods provide the fastest and the most efficient solutions. In this study, color infrared, grayscale, RGB, and fake infrared images were processed with the median filtering and segmentation software developed within the study, and coastal lines were detected by the edge detection method. The results show that segmentation with fake infrared images derived from RGB images give the best results. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Maras, Erdem Emin; Caniberk, Mustafa; Maras, Hadi Hakan, "Automatic Coastline Detection Using Image Enhancement and Segmentation Algorithms", Polish Journal of Environmental Studies, Vol. 25, No. 6, pp. 2519-2525, (2016). en_US
dc.identifier.doi 10.15244/pjoes/64160
dc.identifier.endpage 2525 en_US
dc.identifier.issn 1230-1485
dc.identifier.issn 2083-5906
dc.identifier.issue 6 en_US
dc.identifier.scopus 2-s2.0-85002369546
dc.identifier.scopusquality Q3
dc.identifier.startpage 2519 en_US
dc.identifier.uri https://doi.org/10.15244/pjoes/64160
dc.identifier.volume 25 en_US
dc.identifier.wos WOS:000388734500028
dc.identifier.wosquality Q4
dc.institutionauthor Maraş, Hadi Hakan
dc.language.iso en en_US
dc.publisher Hard en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 4
dc.subject Coastlines en_US
dc.subject Segmentation en_US
dc.subject Edge Detection en_US
dc.subject Integrated Coastal Zone Management (Iczm) en_US
dc.title Automatic Coastline Detection Using Image Enhancement and Segmentation Algorithms tr_TR
dc.title Automatic Coastline Detection Using Image Enhancement and Segmentation Algorithms en_US
dc.type Article en_US
dc.wos.citedbyCount 3
dspace.entity.type Publication
relation.isAuthorOfPublication 8c98bd6c-e698-4f0e-8c8b-ab2fb09ee9ab
relation.isAuthorOfPublication.latestForDiscovery 8c98bd6c-e698-4f0e-8c8b-ab2fb09ee9ab
relation.isOrgUnitOfPublication 12489df3-847d-4936-8339-f3d38607992f
relation.isOrgUnitOfPublication.latestForDiscovery 12489df3-847d-4936-8339-f3d38607992f

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Maraş, Hadi Hakan.pdf
Size:
6.95 MB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: