Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Automatic Coastline Detection Using Image Enhancement and Segmentation Algorithms

dc.authorscopusid36118024900
dc.authorscopusid56891551000
dc.authorscopusid56875440000
dc.authorwosidMaras, Hakan/G-1236-2017
dc.contributor.authorMaras, Erdem Emin
dc.contributor.authorMaraş, Hadi Hakan
dc.contributor.authorCaniberk, Mustafa
dc.contributor.authorMaras, Hadi Hakan
dc.contributor.authorID34410tr_TR
dc.date.accessioned2020-04-03T08:43:43Z
dc.date.available2020-04-03T08:43:43Z
dc.date.issued2016
dc.departmentÇankaya Universityen_US
dc.department-temp[Maras, Erdem Emin] Ondokuz Mayis Univ, Dept Geomat, Samsun, Turkey; [Caniberk, Mustafa] Gen Command Mapping, Dept Photogrammetry, Ankara, Turkey; [Maras, Hadi Hakan] Cankaya Univ, Dept Comp Engn, Ankara, Turkeyen_US
dc.description.abstractCoastlines have hosted numerous civilizations since the earliest times of mankind due to the advantages they offer such as natural resources, transportation, arable areas, seafood, trade, and biodiversity. Coastal regions should be monitored vigilantly by planners and control mechanisms, and any changes in these regions should be detected with its human or natural origin, and future plans and possible interventions should be formed in these aspects to maintain ecological balance, sustainable development, and planned urbanization. Integrated coastal zone management (ICZM) provides an important tool to reach that goal. One of the important elements of ICZM is the detection of coastlines. While there are several methods to detect coastlines, remote sensing methods provide the fastest and the most efficient solutions. In this study, color infrared, grayscale, RGB, and fake infrared images were processed with the median filtering and segmentation software developed within the study, and coastal lines were detected by the edge detection method. The results show that segmentation with fake infrared images derived from RGB images give the best results.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.citationMaras, Erdem Emin; Caniberk, Mustafa; Maras, Hadi Hakan, "Automatic Coastline Detection Using Image Enhancement and Segmentation Algorithms", Polish Journal of Environmental Studies, Vol. 25, No. 6, pp. 2519-2525, (2016).en_US
dc.identifier.doi10.15244/pjoes/64160
dc.identifier.endpage2525en_US
dc.identifier.issn1230-1485
dc.identifier.issn2083-5906
dc.identifier.issue6en_US
dc.identifier.scopus2-s2.0-85002369546
dc.identifier.scopusqualityQ3
dc.identifier.startpage2519en_US
dc.identifier.urihttps://doi.org/10.15244/pjoes/64160
dc.identifier.volume25en_US
dc.identifier.wosWOS:000388734500028
dc.identifier.wosqualityQ4
dc.language.isoenen_US
dc.publisherHarden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCoastlinesen_US
dc.subjectSegmentationen_US
dc.subjectEdge Detectionen_US
dc.subjectIntegrated Coastal Zone Management (Iczm)en_US
dc.titleAutomatic Coastline Detection Using Image Enhancement and Segmentation Algorithmstr_TR
dc.titleAutomatic Coastline Detection Using Image Enhancement and Segmentation Algorithmsen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication8c98bd6c-e698-4f0e-8c8b-ab2fb09ee9ab
relation.isAuthorOfPublication.latestForDiscovery8c98bd6c-e698-4f0e-8c8b-ab2fb09ee9ab

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Maraş, Hadi Hakan.pdf
Size:
6.95 MB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: