On the Determination of the Quadratic Pencil of the Sturm-Liouville Operator With an Impulse
No Thumbnail Available
Date
2025
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Pleiades Publishing Ltd
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
In this work, an inverse problem for the quadratic pencil of the Sturm-Liouville operator with an impulse in the finite interval is considered. It is shown that some information on eigenfunctions at some internal point \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b\in\left(\frac{1}{2},1\right)$$\end{document} and parts of two spectra uniquely determine the potential functions and all parameters in the boundary conditions. Moreover we prove that the potential functions on the whole interval and the parameters in the boundary conditions can be established from one spectrum and the potentials prescribed on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left(\frac{1}{2},1\right)$$\end{document}.
Description
Keywords
Inverse Problem, Pencil, Impulsive, Spectrum
Turkish CoHE Thesis Center URL
Fields of Science
Citation
WoS Q
Q4
Scopus Q
Q4

OpenCitations Citation Count
N/A
Source
Journal of Contemporary Mathematical Analysis-Armenian Academy of Sciences
Volume
60
Issue
5
Start Page
459
End Page
468
PlumX Metrics
Citations
Scopus : 0
Google Scholar™
