Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Local Existence for an Impulsive Fractional Neutral Integro-Differential System With Riemann-Liouville Fractional Derivatives in a Banach Space

dc.contributor.author Baleanu, Dumitru
dc.contributor.author Arjunan, Mani Mallika
dc.contributor.author Kalamani, Palaniyappan
dc.contributor.authorID 56389 tr_TR
dc.contributor.other 02.02. Matematik
dc.contributor.other 02. Fen-Edebiyat Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2019-12-20T12:35:46Z
dc.date.accessioned 2025-09-18T16:08:13Z
dc.date.available 2019-12-20T12:35:46Z
dc.date.available 2025-09-18T16:08:13Z
dc.date.issued 2018
dc.description P, Kalamani/0009-0005-7777-6258; Mani, Mallika Arjunan/0000-0002-3358-0780 en_US
dc.description.abstract In this manuscript, we investigate a sort of fractional neutral integro-differential equations with impulsive outcomes and extend the formula of general solutions for the impulsive fractional neutral integro-differential system in a Banach space. By using the analysis of the limit case and the operator generating compact semigroup, we derive the main results. Finally, an example is discussed to illustrate the efficiency of the results. en_US
dc.description.publishedMonth 11
dc.identifier.citation Kalamani, Palaniyappan; Baleanu, Dumitru; Arjunan, Mani Mallika (2018). Local existence for an impulsive fractional neutral integro-differential system with Riemann-Liouville fractional derivatives in a Banach space, Advances in Difference Equations. en_US
dc.identifier.doi 10.1186/s13662-018-1866-6
dc.identifier.issn 1687-1847
dc.identifier.scopus 2-s2.0-85056569031
dc.identifier.uri https://doi.org/10.1186/s13662-018-1866-6
dc.identifier.uri https://hdl.handle.net/20.500.12416/14976
dc.language.iso en en_US
dc.publisher Pushpa Publishing House en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Fractional Differential Equations en_US
dc.subject Riemann-Liouville Fractional Derivatives en_US
dc.subject Impulsive en_US
dc.title Local Existence for an Impulsive Fractional Neutral Integro-Differential System With Riemann-Liouville Fractional Derivatives in a Banach Space en_US
dc.title Local existence for an impulsive fractional neutral integro-differential system with Riemann-Liouville fractional derivatives in a Banach space tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id P, Kalamani/0009-0005-7777-6258
gdc.author.id Mani, Mallika Arjunan/0000-0002-3358-0780
gdc.author.institutional Baleanu, Dumitru
gdc.author.scopusid 56993772300
gdc.author.scopusid 7005872966
gdc.author.scopusid 23060749300
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Kalamani, Palaniyappan; Arjunan, Mani Mallika] CBM Coll, Dept Math, Coimbatore, Tamil Nadu, India; [Baleanu, Dumitru] Cankaya Univ, Fac Arts & Sci, Dept Math & Comp Sci, Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W2901779292
gdc.identifier.wos WOS:000451113000001
gdc.openalex.fwci 3.6042693
gdc.openalex.normalizedpercentile 0.94
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 12
gdc.plumx.crossrefcites 8
gdc.plumx.mendeley 1
gdc.plumx.scopuscites 18
gdc.scopus.citedcount 18
gdc.wos.citedcount 11
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files