Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

A Classifier for Automatic Categorisation of Chronic Venous Insufficiency Images

dc.authorscopusid 35299561100
dc.authorscopusid 24333488200
dc.authorscopusid 59496750300
dc.contributor.author Karadeniz, Talha
dc.contributor.author Tokdemir, Gul
dc.contributor.author Maras, H. Hakan
dc.contributor.other Yazılım Mühendisliği
dc.date.accessioned 2025-05-11T16:44:42Z
dc.date.available 2025-05-11T16:44:42Z
dc.date.issued 2024
dc.department Çankaya University en_US
dc.department-temp [Karadeniz, Talha] Cankaya Univ, Dept Software Engn, Eskisehir Yolu 29 km, TR-06790 Ankara, Turkiye; [Tokdemir, Gul] Cankaya Univ, Dept Comp Engn, Eskisehir Yolu 29 Km, TR-06790 Ankara, Turkiye; [Maras, H. Hakan] Cankaya Univ, Dept Comp Programming, Eskisehir Yolu 29 Km, TR-06790 Ankara, Turkiye en_US
dc.description.abstract Chronic venous insufficiency (CVI) is a serious disease characterised by the inability of the veins to effectively return blood from the legs back to the heart. This condition represents a significant public health issue due to its prevalence and impact on quality of life. In this work, we propose a tool to help doctors effectively diagnose CVI. Our research is based on extracting Visual Geometry Group network 16 (VGG-16) features and integrating a new classifier, which exploits mean absolute deviation (MAD) statistics to classify samples. Although simple in its core, it outperforms state-of-the-art method which is known as the CVI-classifier in the literature, and additionally it performs better than the methods such as multi-layer perceptron (MLP), Naive Bayes (NB), and gradient boosting machines (GBM) in the context of VGG-based classification of CVI. We had 0.931 accuracy, 0.888 Kappa score, and 0.916 F1-score on a publicly available CVI dataset which outperforms the state-of-the-art CVI-classifier having 0.909, 0.873, and 0.900 for accuracy, Kappa score, and F1-score, respectively. Additionally, we have shown that our classifier has a generalisation capacity comparable to support vector machines (SVM), by conducting experiments on eight different datasets. In these experiments, it was observed that our classifier took the lead on metrics such as F1-score, Kappa score, and receiver operating characteristic area under the curve (ROC AUC). en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.5755/j02.eie.38394
dc.identifier.endpage 44 en_US
dc.identifier.issn 1392-1215
dc.identifier.issue 6 en_US
dc.identifier.scopus 2-s2.0-85213856730
dc.identifier.scopusquality Q3
dc.identifier.startpage 37 en_US
dc.identifier.uri https://doi.org/10.5755/j02.eie.38394
dc.identifier.uri https://hdl.handle.net/20.500.12416/9552
dc.identifier.volume 30 en_US
dc.identifier.wos WOS:001391715900001
dc.identifier.wosquality Q4
dc.language.iso en en_US
dc.publisher Kaunas Univ Technology en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 0
dc.subject Classification Algorithms en_US
dc.subject Decision Support Systems en_US
dc.subject Particle Swarm Optimisation en_US
dc.title A Classifier for Automatic Categorisation of Chronic Venous Insufficiency Images en_US
dc.type Article en_US
dc.wos.citedbyCount 0
dspace.entity.type Publication
relation.isAuthorOfPublication 7269fd52-d99c-41aa-863d-cb899d6b3ab7
relation.isAuthorOfPublication.latestForDiscovery 7269fd52-d99c-41aa-863d-cb899d6b3ab7
relation.isOrgUnitOfPublication aef16c1d-5b84-42f9-9dab-8029b2b0befd
relation.isOrgUnitOfPublication.latestForDiscovery aef16c1d-5b84-42f9-9dab-8029b2b0befd

Files