Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Joint Parameter and State Estimation of the Hemodynamic Model by Iterative Extended Kalman Smoother

dc.contributor.author Akin, Ata
dc.contributor.author Aslan, Serdar
dc.contributor.author Cemgil, Ali Taylan
dc.contributor.author Aslan, Murat Samil
dc.contributor.author Toreyin, Behcet Ugur
dc.contributor.authorID 19325 tr_TR
dc.contributor.other 01. Çankaya Üniversitesi
dc.contributor.other 06. Mühendislik Fakültesi
dc.contributor.other 06.03. Elektrik-Elektronik Mühendisliği
dc.contributor.other 06.01. Bilgisayar Mühendisliği
dc.date.accessioned 2020-04-16T21:21:26Z
dc.date.accessioned 2025-09-18T12:06:45Z
dc.date.available 2020-04-16T21:21:26Z
dc.date.available 2025-09-18T12:06:45Z
dc.date.issued 2016
dc.description Akin, Ata/0000-0002-1773-0857; Toreyin, Behcet Ugur/0000-0003-4406-2783; Cemgil, Ali Taylan/0000-0003-4463-8455 en_US
dc.description.abstract The joint estimation of the parameters and the states of the hemodynamic model from the blood oxygen level dependent (BOLD) signal is a challenging problem. In the functional magnetic resonance imaging (fMRI) literature, quite interestingly, many proposed algorithms work only as a filtering method. This makes the estimation of hidden states and parameters less reliable compared with the algorithms that use smoothing. In standard implementations, smoothing is performed only once. However, joint state and parameter estimation can be improved substantially by iterating smoothing schemes such as the extended Kalman smoother (IEKS). In the fMRI literature, extended Kalman filtering is thought to be less accurate than standard particle filtering (PF). We compared EKF with PF and observed that the contrary is true. We improved the EKF performance by adding smoother. By iterative scheme joint hemodynamic and parameter estimation is improved substantially. We compared IEKS performance with the square-root cubature Kalman smoother (SCKS) algorithm. We show that its accuracy for the state and the parameter estimation is better and much faster than iterative SCKS. SCKS was found to be a better estimator than the dynamic expectation maximization (DEM), EKF, local linearization filter (LLF) and PP methods. We show in this paper that IEKS is a better estimator than iterative SCKS under different process and measurement noise conditions. As a result, IEKS seems to be the best method we evaluated in all aspects. (C) 2015 Elsevier Ltd. All rights reserved. en_US
dc.description.publishedMonth 2
dc.identifier.citation Aslan, Serdar...et al., "Joint parameter and state estimation of the hemodynamic model by iterative extended Kalman smoother", Biomedical Signal Processing and Control, Vol. 24, pp. 47-62, (2016). en_US
dc.identifier.doi 10.1016/j.bspc.2015.09.006
dc.identifier.issn 1746-8094
dc.identifier.issn 1746-8108
dc.identifier.scopus 2-s2.0-84942474015
dc.identifier.uri https://doi.org/10.1016/j.bspc.2015.09.006
dc.identifier.uri https://hdl.handle.net/123456789/10980
dc.language.iso en en_US
dc.publisher Elsevier Sci Ltd en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Hemodynamic Model en_US
dc.subject Extented Kalman Filter/Smoother en_US
dc.subject Cubature Kalman Filter/Smoother en_US
dc.title Joint Parameter and State Estimation of the Hemodynamic Model by Iterative Extended Kalman Smoother en_US
dc.title Joint parameter and state estimation of the hemodynamic model by iterative extended Kalman smoother tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Akin, Ata/0000-0002-1773-0857
gdc.author.id Toreyin, Behcet Ugur/0000-0003-4406-2783
gdc.author.id Cemgil, Ali Taylan/0000-0003-4463-8455
gdc.author.institutional Arslan, Serdar
gdc.author.institutional Töreyin, Behçet Uğur
gdc.author.scopusid 55970029800
gdc.author.scopusid 15130945100
gdc.author.scopusid 16229757000
gdc.author.scopusid 9249500700
gdc.author.scopusid 8302822700
gdc.author.wosid Akin, Ata/Aaf-2494-2019
gdc.author.wosid Aslan, Serdar/Abb-1286-2020
gdc.author.wosid Akin, Ata/F-4878-2016
gdc.author.wosid Toreyin, Behcet Ugur/A-6780-2012
gdc.author.wosid Cemgil, Ali Taylan/A-3068-2016
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Aslan, Serdar] Bagazigi Univ, Inst Biomed Engn, Istanbul, Turkey; [Cemgil, Ali Taylan] Bogazici Univ, Dept Comp Engn, Istanbul, Turkey; [Aslan, Murat Samil] Tubitak Bilgem Iltaren Adv Technol Res Inst, Ankara, Turkey; [Toreyin, Behcet Ugur] Cankaya Univ, Dept Elect & Elect Engn, Fac Engn, Ankara, Turkey; [Akin, Ata] Acibadem Univ, Dept Med Engn, Istanbul, Turkey en_US
gdc.description.endpage 62 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 47 en_US
gdc.description.volume 24 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W1521402617
gdc.identifier.wos WOS:000366538600006
gdc.openalex.fwci 0.98513656
gdc.openalex.normalizedpercentile 0.77
gdc.opencitations.count 8
gdc.plumx.crossrefcites 1
gdc.plumx.mendeley 17
gdc.plumx.scopuscites 9
gdc.scopus.citedcount 9
gdc.wos.citedcount 8
relation.isAuthorOfPublication ee02ccda-1b5e-4bba-b8b3-ece13ce2ec47
relation.isAuthorOfPublication 31d067df-3d94-4058-a635-943b70f82ea4
relation.isAuthorOfPublication.latestForDiscovery ee02ccda-1b5e-4bba-b8b3-ece13ce2ec47
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication 43797d4e-4177-4b74-bd9b-38623b8aeefa
relation.isOrgUnitOfPublication a8b0a996-7c01-41a1-85be-843ba585ef45
relation.isOrgUnitOfPublication 12489df3-847d-4936-8339-f3d38607992f
relation.isOrgUnitOfPublication.latestForDiscovery 0b9123e4-4136-493b-9ffd-be856af2cdb1

Files