Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

On the Fractional Model of Fokker-Planck Equations With Two Different Operator

dc.contributor.author Inc, M.
dc.contributor.author Baleanu, D.
dc.contributor.author Korpinar, Z.
dc.contributor.authorID 56389 tr_TR
dc.contributor.other 02.02. Matematik
dc.contributor.other 02. Fen-Edebiyat Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2022-11-17T11:34:17Z
dc.date.accessioned 2025-09-18T14:10:12Z
dc.date.available 2022-11-17T11:34:17Z
dc.date.available 2025-09-18T14:10:12Z
dc.date.issued 2020
dc.description.abstract In this paper, the fractional model of Fokker-Planck equations are solved by using Laplace homotopy analysis method (LHAM). LHAM is expressed with a combining of Laplace transform and homotopy methods to obtain a new analytical series solutions of the fractional partial differential equations (FPDEs) in the Caputo-Fabrizio and Liouville-Caputo sense. Here obtained solutions are compared with exact solutions of these equations. The suitability of the method is removed from the plotted graphs. The obtained consequens explain that technique is a power and efficient process in investigation of solutions for fractional model of Fokker-Planck equations. © 2020 the Author(s), licensee AIMS Press. en_US
dc.identifier.citation Korpinar, Zeliha; İnç, Mustafa; Baleanu, Dumitru (2020). "On the fractional model of fokker-planck equations with two different operator", AIMS Mathematics, Vol. 5, No. 1, pp. 236-248. en_US
dc.identifier.doi 10.3934/math.2020015
dc.identifier.issn 2473-6988
dc.identifier.scopus 2-s2.0-85076896303
dc.identifier.uri https://doi.org/10.3934/math.2020015
dc.identifier.uri https://hdl.handle.net/20.500.12416/13618
dc.language.iso en en_US
dc.publisher American Institute of Mathematical Sciences en_US
dc.relation.ispartof AIMS Mathematics en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Caputo-Fabrizio Derivative en_US
dc.subject Fractional Model Of Fokker-Planck Equations en_US
dc.subject Laplace Homotopy Analysis Method en_US
dc.subject Series Solution en_US
dc.title On the Fractional Model of Fokker-Planck Equations With Two Different Operator en_US
dc.title On the fractional model of fokker-planck equations with two different operator tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Baleanu, Dumitru
gdc.author.scopusid 55830225500
gdc.author.scopusid 56051853500
gdc.author.scopusid 7005872966
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp Korpinar Z., MusAlparslan University, Faculty of Economic and Administrative Sciences, Department of Administration, Muş, 49250, Turkey; Inc M., Fırat University, Science Faculty, Department of Mathematics, Elazığ, 23119, Turkey; Baleanu D., Department of Mathematics, Cankaya University, Balgat, Ankara, 06530, Turkey, Institute of Space Sciences, Magurele-Bucharest, Romania en_US
gdc.description.endpage 248 en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 236 en_US
gdc.description.volume 5 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W2987436801
gdc.openalex.fwci 1.03325535
gdc.openalex.normalizedpercentile 0.76
gdc.opencitations.count 12
gdc.plumx.mendeley 2
gdc.plumx.scopuscites 13
gdc.scopus.citedcount 13
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files