On the Fractional Model of Fokker-Planck Equations With Two Different Operator
| dc.contributor.author | Inc, M. | |
| dc.contributor.author | Baleanu, D. | |
| dc.contributor.author | Korpinar, Z. | |
| dc.contributor.authorID | 56389 | tr_TR |
| dc.contributor.other | 02.02. Matematik | |
| dc.contributor.other | 02. Fen-Edebiyat Fakültesi | |
| dc.contributor.other | 01. Çankaya Üniversitesi | |
| dc.date.accessioned | 2022-11-17T11:34:17Z | |
| dc.date.accessioned | 2025-09-18T14:10:12Z | |
| dc.date.available | 2022-11-17T11:34:17Z | |
| dc.date.available | 2025-09-18T14:10:12Z | |
| dc.date.issued | 2020 | |
| dc.description.abstract | In this paper, the fractional model of Fokker-Planck equations are solved by using Laplace homotopy analysis method (LHAM). LHAM is expressed with a combining of Laplace transform and homotopy methods to obtain a new analytical series solutions of the fractional partial differential equations (FPDEs) in the Caputo-Fabrizio and Liouville-Caputo sense. Here obtained solutions are compared with exact solutions of these equations. The suitability of the method is removed from the plotted graphs. The obtained consequens explain that technique is a power and efficient process in investigation of solutions for fractional model of Fokker-Planck equations. © 2020 the Author(s), licensee AIMS Press. | en_US |
| dc.identifier.citation | Korpinar, Zeliha; İnç, Mustafa; Baleanu, Dumitru (2020). "On the fractional model of fokker-planck equations with two different operator", AIMS Mathematics, Vol. 5, No. 1, pp. 236-248. | en_US |
| dc.identifier.doi | 10.3934/math.2020015 | |
| dc.identifier.issn | 2473-6988 | |
| dc.identifier.scopus | 2-s2.0-85076896303 | |
| dc.identifier.uri | https://doi.org/10.3934/math.2020015 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/13618 | |
| dc.language.iso | en | en_US |
| dc.publisher | American Institute of Mathematical Sciences | en_US |
| dc.relation.ispartof | AIMS Mathematics | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Caputo-Fabrizio Derivative | en_US |
| dc.subject | Fractional Model Of Fokker-Planck Equations | en_US |
| dc.subject | Laplace Homotopy Analysis Method | en_US |
| dc.subject | Series Solution | en_US |
| dc.title | On the Fractional Model of Fokker-Planck Equations With Two Different Operator | en_US |
| dc.title | On the fractional model of fokker-planck equations with two different operator | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Baleanu, Dumitru | |
| gdc.author.scopusid | 55830225500 | |
| gdc.author.scopusid | 56051853500 | |
| gdc.author.scopusid | 7005872966 | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | Korpinar Z., MusAlparslan University, Faculty of Economic and Administrative Sciences, Department of Administration, Muş, 49250, Turkey; Inc M., Fırat University, Science Faculty, Department of Mathematics, Elazığ, 23119, Turkey; Baleanu D., Department of Mathematics, Cankaya University, Balgat, Ankara, 06530, Turkey, Institute of Space Sciences, Magurele-Bucharest, Romania | en_US |
| gdc.description.endpage | 248 | en_US |
| gdc.description.issue | 1 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 236 | en_US |
| gdc.description.volume | 5 | en_US |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W2987436801 | |
| gdc.openalex.fwci | 1.03325535 | |
| gdc.openalex.normalizedpercentile | 0.76 | |
| gdc.opencitations.count | 12 | |
| gdc.plumx.mendeley | 2 | |
| gdc.plumx.scopuscites | 13 | |
| gdc.scopus.citedcount | 13 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |