New Fractional Derivatives Applied To the Korteweg-De Vries and Korteweg-De Vries-burger's Equations
| dc.contributor.author | Baleanu, Dumitru | |
| dc.contributor.author | Atangana, Abdon | |
| dc.contributor.author | Saad, Khaled M. | |
| dc.contributor.authorID | 56389 | tr_TR |
| dc.contributor.other | 02.02. Matematik | |
| dc.contributor.other | 02. Fen-Edebiyat Fakültesi | |
| dc.contributor.other | 01. Çankaya Üniversitesi | |
| dc.date.accessioned | 2020-03-26T08:21:06Z | |
| dc.date.accessioned | 2025-09-18T14:10:06Z | |
| dc.date.available | 2020-03-26T08:21:06Z | |
| dc.date.available | 2025-09-18T14:10:06Z | |
| dc.date.issued | 2018 | |
| dc.description | Khaled/0000-0001-6381-6806 | en_US |
| dc.description.abstract | In this paper, we extend the model of the Korteweg-de Vries (KDV) and Korteweg-de Vries-Burger's (KDVB) to new model time fractional Korteweg-de Vries (TFKDV) and time fractional Korteweg-de Vries-Burger's (TFKDVB) with Liouville-Caputo (LC), Caputo-Fabrizio (CF), and Atangana-Baleanu (AB) fractional time derivative equations, respectively. We utilize the q-homotopy analysis transform method (q-HATM) to compute the approximate solutions of TFKDV and TFKDVB using LC, CF and AB in Liouville-Caputo sense. We study the convergence analysis of q-HATM by computing the Residual Error Function (REF) and finding the interval of the convergence through the h-curves. Also, we find the optimal values of h so that, we assure the convergence of the approximate solutions. The results are very effective and accurate in solving the TFKDV and TFKDVB. | en_US |
| dc.description.publishedMonth | 9 | |
| dc.identifier.citation | Saad, Khaled M.; Baleanu, Dumitru; Atangana, Abdon, "New fractional derivatives applied to the Korteweg-de Vries and Korteweg-de Vries-Burger's equations", Computational & Applied Mathematics. Vol. 37, No 4, pp. 5203,5216, (2018) | en_US |
| dc.identifier.doi | 10.1007/s40314-018-0627-1 | |
| dc.identifier.issn | 0101-8205 | |
| dc.identifier.issn | 1807-0302 | |
| dc.identifier.scopus | 2-s2.0-85052528611 | |
| dc.identifier.uri | https://doi.org/10.1007/s40314-018-0627-1 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/13570 | |
| dc.language.iso | en | en_US |
| dc.publisher | Springer Heidelberg | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Atangana-Baleanu | en_US |
| dc.subject | Time Fractional Korteweg-De Vries | en_US |
| dc.subject | Time Fractional Korteweg-De Vries-Burger'S | en_US |
| dc.subject | Q-Homotopy Analysis Transform Method | en_US |
| dc.subject | Liouville-Caputo | en_US |
| dc.subject | Caputo-Fabrizio | en_US |
| dc.title | New Fractional Derivatives Applied To the Korteweg-De Vries and Korteweg-De Vries-burger's Equations | en_US |
| dc.title | New Fractional Derivatives Applied to the Korteweg-De Vries and Korteweg-De Vries-Burger's Equations | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | , Khaled/0000-0001-6381-6806 | |
| gdc.author.institutional | Baleanu, Dumitru | |
| gdc.author.scopusid | 36840571200 | |
| gdc.author.scopusid | 7005872966 | |
| gdc.author.scopusid | 55659450400 | |
| gdc.author.wosid | Baleanu, Dumitru/B-9936-2012 | |
| gdc.author.wosid | Atangana, Abdon/Aae-4779-2021 | |
| gdc.author.wosid | Saad, Khaled/Aap-9543-2020 | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Saad, Khaled M.] Najran Univ, Dept Math, Coll Arts & Sci, Najran, Saudi Arabia; [Saad, Khaled M.] Taiz Univ, Fac Sci Appl, Dept Math, Taizi, Yemen; [Baleanu, Dumitru] Cankaya Univ, Dept Math, Fac Sci, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania; [Atangana, Abdon] Univ Free State, Inst Groundwater Studies, Fac Nat & Agr Sci, ZA-9300 Bloemfontein, South Africa | en_US |
| gdc.description.endpage | 5216 | en_US |
| gdc.description.issue | 4 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 5203 | en_US |
| gdc.description.volume | 37 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W2801412973 | |
| gdc.identifier.wos | WOS:000443034900070 | |
| gdc.openalex.fwci | 9.28882292 | |
| gdc.openalex.normalizedpercentile | 0.99 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 75 | |
| gdc.plumx.crossrefcites | 26 | |
| gdc.plumx.mendeley | 18 | |
| gdc.plumx.scopuscites | 98 | |
| gdc.scopus.citedcount | 98 | |
| gdc.wos.citedcount | 82 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |