Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

About Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives

dc.contributor.author Baleanu, Dumitru
dc.contributor.author Muslih, Sami I.
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2020-04-18T13:29:21Z
dc.date.available 2020-04-18T13:29:21Z
dc.date.issued 2005
dc.department Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü en_US
dc.description.abstract sRecently, an extension of the simplest fractional problem and the fractional variational problem of Lagrange was obtained by Agrawal. The first part of this study presents the fractional Lagrangian formulation of mechanical systems and introduce the Levy path integral. The second part is an extension to Agrawal's approach to classical fields with fractional derivatives. The classical fields with fractional derivatives are investigated by using the Lagrangian formulation. The case of the fractional Schrodinger equation is presented. en_US
dc.identifier.citation Baleanu, dumitru; Muslih, Sami I., "About Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives", Proceedings Of The Asme International Design Engineering Technical Conferences And Computers And Information In Engineering Conference, Vol 6, Pts A-C, pp.1457-1464, (2005). en_US
dc.identifier.endpage 1464 en_US
dc.identifier.isbn 791847438
dc.identifier.startpage 1457 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12416/3343
dc.language.iso en en_US
dc.publisher Amer Soc Mechanical Engineers en_US
dc.relation.ispartof Proceedings Of The Asme International Design Engineering Technical Conferences And Computers And Information In Engineering Conference, Vol 6, Pts A-C en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Sequential Mechanics en_US
dc.subject Variational-Problems en_US
dc.subject Linear Velocities en_US
dc.subject Quantum-Mechanics en_US
dc.subject Equations en_US
dc.subject Systems en_US
dc.title About Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives tr_TR
dc.title About Lagrangian Formulation of Classical Fields Within Riemann-Liouville Fractional Derivatives en_US
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: