Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Some New Operational Matrices and Its Application To Fractional Order Poisson Equations With Integral Type Boundary Constrains

dc.contributor.author Khan, Rahmat Ali
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Rashidi, Mohammad Mehdi
dc.contributor.author Khalil, Hammad
dc.date.accessioned 2020-01-31T11:54:26Z
dc.date.accessioned 2025-09-18T12:47:27Z
dc.date.available 2020-01-31T11:54:26Z
dc.date.available 2025-09-18T12:47:27Z
dc.date.issued 2019
dc.description.abstract Enormous application of fractional order partial differential equations (FPDEs) subjected to some constrains in the form of nonlocal boundary conditions motivated the interest of many scientists around the world. The prime objective of this article is to find approximate solution of a general FPDEs subject to nonlocal integral type boundary conditions on both ends of the domain. The proposed method is based on spectral method. We construct some new operational matrices which have the ability to handle integral type non-local boundary constrains. These operational matrices can be effectively applied to convert the FPDEs together with its integral types boundary conditions to easily solvable matrix equation. The accuracy and efficiency of proposed method are demonstrated by solving some bench mark problems. The proposed method has the ability to solve non-local FPDEs with high accuracy and low computational cost. Different aspects of presented approach are compared with two other recently developed methods, Haar wavelets collocation method and a family of collocation methods which are based on Radial base functions. It is observed that the proposed method is highly accurate, robust, efficient and stable as compared to these methods. (C) 2016 Elsevier Ltd. All rights reserved. en_US
dc.identifier.citation Khalil, Hammad...et al. (2019). "Some new operational matrices and its application to fractional order Poisson equations with integral type boundary constrains", Computers & Mathematics With Applications, Vol. 78, No. 6, pp. 1826-1837. en_US
dc.identifier.doi 10.1016/j.camwa.2016.04.014
dc.identifier.issn 0898-1221
dc.identifier.issn 1873-7668
dc.identifier.scopus 2-s2.0-84964194329
dc.identifier.uri https://doi.org/10.1016/j.camwa.2016.04.014
dc.identifier.uri https://hdl.handle.net/20.500.12416/11811
dc.language.iso en en_US
dc.publisher Pergamon-elsevier Science Ltd en_US
dc.relation.ispartof Computers & Mathematics with Applications
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Legendre Polynomials en_US
dc.subject Fractional Order Poisson Equation en_US
dc.subject Nonlocal Integral Boundary Conditions en_US
dc.subject Operational Matrices en_US
dc.title Some New Operational Matrices and Its Application To Fractional Order Poisson Equations With Integral Type Boundary Constrains en_US
dc.title Some new operational matrices and its application to fractional order Poisson equations with integral type boundary constrains tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 56076051200
gdc.author.scopusid 35226550700
gdc.author.scopusid 7005872966
gdc.author.scopusid 57189276752
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.author.wosid Rashidi, Mohammad/P-2692-2014
gdc.author.wosid Khalil, Hammad/E-8625-2018
gdc.author.yokid 56389
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Khalil, Hammad; Khan, Rahmat Ali] Univ Malakand, Dept Math, Chakadara Dir L, Khyber Pakhtunk, Pakistan; [Baleanu, Dumitru] Cankaya Univ, Dept Math & Comp Sci, Ankara, Turkey; [Rashidi, Mohammad Mehdi] Tongji Univ, Shanghai Key Lab Vehicle Aerodynam & Vehicle Ther, Shanghai, Peoples R China; [Rashidi, Mohammad Mehdi] ENN Tongji Clean Energy Inst Adv Studies, Shanghai, Peoples R China en_US
gdc.description.endpage 1837 en_US
gdc.description.issue 6 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 1826 en_US
gdc.description.volume 78 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W2343897136
gdc.identifier.wos WOS:000486095200004
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 10.0
gdc.oaire.influence 3.0450844E-9
gdc.oaire.isgreen false
gdc.oaire.keywords fractional order Poisson equation
gdc.oaire.keywords nonlocal integral boundary conditions
gdc.oaire.keywords Legendre polynomials
gdc.oaire.keywords operational matrices
gdc.oaire.keywords Fractional partial differential equations
gdc.oaire.popularity 3.1555578E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0103 physical sciences
gdc.oaire.sciencefields 0101 mathematics
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.collaboration International
gdc.openalex.fwci 0.89732055
gdc.openalex.normalizedpercentile 0.81
gdc.opencitations.count 10
gdc.plumx.crossrefcites 10
gdc.plumx.mendeley 7
gdc.plumx.scopuscites 11
gdc.publishedmonth 9
gdc.scopus.citedcount 11
gdc.virtual.author Baleanu, Dumitru
gdc.wos.citedcount 6
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files