Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Generation of New Fractional Inequalities Via N Polynomials S-Type Convexity With Applications

dc.contributor.author Iscan, Imdat
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Chu, Yu-Ming
dc.contributor.author Rashid, Saima
dc.contributor.authorID 56389 tr_TR
dc.contributor.other 02.02. Matematik
dc.contributor.other 02. Fen-Edebiyat Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2021-01-07T11:41:24Z
dc.date.accessioned 2025-09-18T14:08:49Z
dc.date.available 2021-01-07T11:41:24Z
dc.date.available 2025-09-18T14:08:49Z
dc.date.issued 2020
dc.description Iscan, Imdat/0000-0001-6749-0591 en_US
dc.description.abstract The celebrated Hermite-Hadamard and Ostrowski type inequalities have been studied extensively since they have been established. We find novel versions of the Hermite-Hadamard and Ostrowski type inequalities for the n-polynomial s-type convex functions in the frame of fractional calculus. Taking into account the new concept, we derive some generalizations that capture novel results under investigation. We present two different general techniques, for the functions whose first and second derivatives in absolute value at certain powers are n-polynomial s-type convex functions by employing K-fractional integral operators have yielded intriguing results. Applications and motivations of presented results are briefly discussed that generate novel variants related to quadrature rules that will be helpful for in-depth investigation in fractal theory, optimization and machine learning. en_US
dc.description.publishedMonth 5
dc.description.sponsorship Natural Science Foundation of China [11971142, 61673169, 11871202, 11701176, 11626101, 11601485] en_US
dc.description.sponsorship The work was supported by the Natural Science Foundation of China (Grant Nos. 11971142, 61673169, 11871202, 11701176, 11626101, 11601485). en_US
dc.identifier.citation Rashid, Saima...et al. (2020). "Generation of new fractional inequalities via n polynomials s-type convexity with applications", Advances in Difference Equations, Vol. 2020, No. 1. en_US
dc.identifier.doi 10.1186/s13662-020-02720-y
dc.identifier.issn 1687-1847
dc.identifier.scopus 2-s2.0-85085743133
dc.identifier.uri https://doi.org/10.1186/s13662-020-02720-y
dc.identifier.uri https://hdl.handle.net/20.500.12416/13220
dc.language.iso en en_US
dc.publisher Springer en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Convex Function en_US
dc.subject S-Type Convex Function en_US
dc.subject Hermite-Hadamard Inequality en_US
dc.subject Ostrowski Inequality en_US
dc.subject Higher Degree Polynomial S-Convex en_US
dc.title Generation of New Fractional Inequalities Via N Polynomials S-Type Convexity With Applications en_US
dc.title Generation of new fractional inequalities via n polynomials s-type convexity with applications tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Iscan, Imdat/0000-0001-6749-0591
gdc.author.institutional Baleanu, Dumitru
gdc.author.scopusid 57200041124
gdc.author.scopusid 55825802200
gdc.author.scopusid 7005872966
gdc.author.scopusid 9839077200
gdc.author.wosid Rashid, Saima/Aaf-7976-2021
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.author.wosid Iscan, Imdat/C-2817-2014
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Rashid, Saima] Govt Coll Univ, Dept Math, Faisalabad, Pakistan; [Iscan, Imdat] Giresun Univ, Fac Arts & Sci, Dept Math, Giresun, Turkey; [Baleanu, Dumitru] Cankaya Univ, Fac Arts & Sci, Dept Math, Ankara, Turkey; [Chu, Yu-Ming] Huzhou Univ, Dept Math, Huzhou, Peoples R China; [Chu, Yu-Ming] Changsha Univ Sci & Technol, Hunan Prov Key Lab Math Modeling & Anal Engn, Changsha, Peoples R China en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.volume 2020 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W3033589593
gdc.identifier.wos WOS:000540322800003
gdc.openalex.fwci 22.63707165
gdc.openalex.normalizedpercentile 1.0
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 49
gdc.plumx.crossrefcites 20
gdc.plumx.facebookshareslikecount 73
gdc.plumx.mendeley 10
gdc.plumx.scopuscites 88
gdc.scopus.citedcount 87
gdc.wos.citedcount 67
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files